精英家教网 > 高中数学 > 题目详情

如图,正三棱柱ABC-A1B1C1中,E是AC中点.
(Ⅰ)求证:AB1∥平面BEC1
(Ⅱ)若,AB=2,AA1=数学公式,求点A到平面BEC1的距离;
(Ⅲ)当数学公式为何值时,二面角E-BC1-C的正弦值为数学公式

(Ⅰ)证明:连接B1C交BC1于点F,连接EF,则F为B1C的中点

∵E是AC中点,∴EF∥AB1
∵AB1?平面BEC1,EF?平面BEC1
∴AB1∥平面BEC1
(Ⅱ)解:由题意知,点A到平面BEC1的距离即点C到平面BEC1的距离
∵ABC-A1B1C1是正三棱柱
∴BE⊥平面ACC1A1
∵BE?平面BEC1
∴平面BEC1⊥平面ACC1A1
过点C作CH⊥C1E于点H,则CH⊥平面BEC1,∴CH为点C到平面BEC1的距离
在直角△CEC1中,CE=1,CC1=,C1E=,∴由等面积可得CH=
∴点A到平面BEC1的距离为
(Ⅲ)解:过H作HG⊥BC1于G,连接CG,由三垂线定理得CG⊥BC1,故∠CGH为二面角E-BC1-C的平面角
当AA1=2a,AB=b时,

∴在直角△CGH中,sin∠CGH===
∴b=2a
==1
=1时,二面角E-BC1-C的正弦值为
分析:(Ⅰ)连接B1C交BC1于点F,连接EF,则F为B1C的中点,根据E是AC中点,可得EF∥AB1,从而可证AB1∥平面BEC1
(Ⅱ)由题意知,点A到平面BEC1的距离即点C到平面BEC1的距离,过点C作CH⊥C1E于点H,则可证CH⊥平面BEC1,故CH为点C到平面BEC1的距离,由等面积可得结论;
(Ⅲ)过H作HG⊥BC1于G,连接CG,由三垂线定理得CG⊥BC1,故∠CGH为二面角E-BC1-C的平面角,求出CH、CG,利用二面角E-BC1-C的正弦值为,即可求得结论.
点评:本题考查线面平行,考查点到面的距离,考查面面角,解题的关键是掌握线面平行的判定,正确作出表示点面距离的线段,正确作出面面角,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1各棱长都等于a,E是BB1的中点.
(1)求直线C1B与平面A1ABB1所成角的正弦值;
(2)求证:平面AEC1⊥平面ACC1A1
(3)求点C1到平面AEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1的各棱长都2,E,F分别是AB,A1C1的中点,则EF的长是(  )
A、2
B、
3
C、
5
D、
7

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(Ⅰ)求证:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州二模)如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(Ⅰ)求证:AB1⊥面A1BD;
(Ⅱ)设点O为AB1上的动点,当OD∥平面ABC时,求
AOOB1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1中(注:底面为正三角形且侧棱与底面垂直),BC=CC1=2,P,Q分别为BB1,CC1的中点.
(Ⅰ)求多面体ABC-A1PC1的体积;
(Ⅱ)求A1Q与BC1所成角的大小.

查看答案和解析>>

同步练习册答案