精英家教网 > 高中数学 > 题目详情
如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,给出下列结论:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°;⑤直线PD与平面PAB所成角的余弦值为
10
4
.其中正确的有
①④⑤
①④⑤
(把所有正确的序号都填上).
分析:①由PA⊥平面ABC,及正六边形的性质易得:AE⊥平面PAB,所以AE⊥PB,①正确;②由PA⊥平面ABC,易得平面PAB⊥平面ABC,所以平面ABC⊥平面PBC不成立,②错;③由正六边形的性质得BC∥AD,但是AD与平面PAE相交,所以③错;④由PA⊥平面ABC,可得PA⊥AD,又因为PA=2AB,所以∠PDA=45°,④正确;⑤由于DE∥AB,从而D到平面PAB的距离即为E到平面PAB的距离,利用直线与平面所成角的定义求出直线PD与平面PAB所成角的正弦值,再转化成直线PD与平面PAB所成角的余弦值即可进行判断.
解答:解:对于①、由PA⊥平面ABC,AE?平面ABC,得PA⊥AE,
又由正六边形的性质得AE⊥AB,PA∩AB=A,得AE⊥平面PAB,又PB?平面PAB,
∴AE⊥PB,①正确;
对于②、又平面PAB⊥平面ABC,所以平面ABC⊥平面PBC不成立,②错;
对于③、由正六边形的性质得BC∥AD,又AD?平面PAD,∴BC∥平面PAD,∴直线BC∥平面PAE也不成立,③错;
对于④、在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,∴④正确;
对于⑤、由于DE∥AB,∴D到平面PAB的距离即为E到平面PAB的距离,即E到直线PA的距离,即EA,EA=
3
AB,
在Rt△PAD中,PA=AD=2AB,∴PD=2
2
AB,
∴直线PD与平面PAB所成角的正弦值为
3
AB
2
2
AB
=
6
4

∴直线PD与平面PAB所成角的余弦值为
1-(
6
4
)2
=
10
4
,∴⑤正确.
故答案为:①④⑤.
点评:本小题考查空间中的线面关系,正六边形的性质等基础知识,考查空间想象能力和思维能力,以及空间想象能力、推理论证能力和运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB则下列结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

16、如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:
①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.
其中正确的有
①④
(把所有正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC.则下列结论不正确的序号是

①CD∥平面PAF
②DF⊥平面PAF
③CF∥平面PAB
④CF⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源:新课标高三数学直线、平面、简单几何体专项训练(河北) 题型:填空题

如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:

①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.

其中正确的有________(把所有正确的序号都填上)

 

查看答案和解析>>

同步练习册答案