精英家教网 > 高中数学 > 题目详情
已知数列{xn}的各项为不等于1的正数,其前n项和为Sn,点Pn的坐标为(xn,Sn),若所有这样的点Pn(n=1,2,…)都在斜率为k的同一直线(常数k≠0,1)上.
(Ⅰ)求证:数列{xn}是等比数列;
(Ⅱ)设yn=logxn2a2-3a+1满足ys=
1
2t+1
,yt=
1
2s+1
(s,t∈N,且s≠t)共中a为常数,且1<a<
3
2
,试判断,是否存在自然数M,使当n>M时,xn>1恒成立?若存在,求出相应的M;若不存在,请说明理由.
考点:数列与不等式的综合,等比关系的确定
专题:等差数列与等比数列
分析:(Ⅰ)由已知得(k-1)xn+1=kxn,由此能证明{xn}是公比为
k
k-1
的等比数列.
(Ⅱ)存在自然数M,使当n>M时,xn>1恒成立,由1<a<
3
2
,得0<2a2-3a+1<1,设公比为q>0首项为x1,则xn=x1•qn-1,得{
1
yn
}是以d为公差的等差数列.从而推导出当n>M=(t+s)时,xn=(2a2-3a+1)
1
yn
>1恒成立.
解答: (Ⅰ)证明:∵点pn,pn+1都在斜率为k的直线上,
Sn+1-Sn
xn+1-xn
=k,即
xn+1
xn+1-xn
=k,…(1分)
故(k-1)xn+1=kxn
∵k≠0,xn+1≠1,xn≠1,…(3分)
xn+1
xn
=
k
k-1
=常数,∴{xn}是公比为
k
k-1
的等比数列.…(4分)
(Ⅱ)解:答案是肯定的,即存在自然数M,使当n>M时,xn>1恒成立.…(5分)
事实上,由1<a<
3
2
,得0<2a2-3a+1<1 …(6分)
∵yn=log xn(2a2-3a+1),
1
yn
=log (2a2-3a+1)xn …(8分)
由(1)得{xn}是等比数列,设公比为q>0首项为x1,则xn=x1•qn-1(n∈N)
1
yn
=(n-1)log (2a2-3a+1)q+log (2a2-3a+1)x1
令d=log (2a2-3a+1)q,故得{
1
yn
}是以d为公差的等差数列.
又∵
1
ys
=2t+1,
1
yt
=2s+1,
1
ys
-
1
yt
=2(t-s)
即(s-1)d-(t-1)d=2(t-s),
∴d=-2…(10分)
1
yn
=
1
ys
+(n-s)(-2)=2(t+s)-2n+1(n∈N)
又∵xn=(2a2-3a+1)
1
yn
,(n∈N)
∴要使xn>1恒成立,即须
1
yn
<0…(12分)
∴2(t+s)-2n+1<0,∴n>(t+s)+
1
2

当M=t+s,n>M时,我们有
1
yn
<0恒成立,
∵0<2a2-3a+1<1,
∴当n>M=(t+s)时,xn=(2a2-3a+1)
1
yn
>1恒成立.…(14分)
点评:本题考查数列是等比数列的证明,考查满足条件的自然数是否存在的判断与求法,解题时要注意构造法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4.E是PD的中点,
(1)求二面角E-AC-D的余弦值;
(2)求CD与平面ACE所成角的正弦值;
(3)求VD-ACE

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设A是圆x2+y2=6上的动点,点B是A在x轴上投影,M为AB上一点,且|MB|=
3
3
|AB|.当A在圆上运动时,点M的轨迹为曲线G.过点(m,0)(m>
6
)且倾斜角为
6
的直线l交曲线G于C,D两点.
(1)求曲线G的方程;
(2)若点F是曲线G的右焦点且∠CFD∈[
π
3
π
2
],求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某林管部门在每年植树节前,为保证树苗的质量,都会对树苗进行检测.现从甲、乙两种树苗中各抽取10株,测量其高度,所得数据如茎叶图所示,则下列描述正确的是(  )
A、甲树苗的平均高度大于乙树苗的平均高度,且甲树苗比乙树苗长得整齐
B、甲树苗的平均高度大于乙树苗的平均高度,但乙树苗比甲树苗长得整齐
C、乙树苗的平均高度大于甲树苗的平均高度,但甲树苗比乙树苗长得整齐
D、乙树苗的平均高度大于甲树苗的平均高度,且乙树苗比甲树苗长得整齐

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直二面角D-AB-E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.
(Ⅰ)求证:AE⊥平面BCE;
(Ⅱ)求二面角B-AC-E的余弦值;
(Ⅲ)求点D到平面ACE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)=a1x+a2x2+a3x3+…+anxn,(n∈N*),并且对于任意的n∈N*函数y=f(x)的图象恒经过点(1,n2),
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求f(-1)(用n表示)
(Ⅲ)求证:若n≥2(n∈N*),则有
5
4
≤f(
1
2
)<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面四个推导过程符合演绎推理三段论形式且推理正确的是(  )
A、大前提:无限不循环小数是无理数;小前提:π丌是无理数;结论:π是无限不循环小数
B、大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数
C、大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数
D、大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an},{bn} 均为等差数列,前n项和分别为Sn,Tn
(1)若平面内三个不共线向量
OA
OB
OC
满足
OC
=a3
OA
+a15
OB
,且A,B,C三点共线.是否存在正整数n,使Sn为定值?若存在,请求出此定值;若不存在,请说明理由;
(2)若对 n∈N+,有 
Sn
Tn
=
31n+101
n+3
,求使 
an
bn
为整数的正整数n的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x3+ax-2在区间(-1,+∞)上是增函数,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案