精英家教网 > 高中数学 > 题目详情
已知{an},{bn} 均为等差数列,前n项和分别为Sn,Tn
(1)若平面内三个不共线向量
OA
OB
OC
满足
OC
=a3
OA
+a15
OB
,且A,B,C三点共线.是否存在正整数n,使Sn为定值?若存在,请求出此定值;若不存在,请说明理由;
(2)若对 n∈N+,有 
Sn
Tn
=
31n+101
n+3
,求使 
an
bn
为整数的正整数n的集合.
考点:数列与向量的综合,数列的求和
专题:等差数列与等比数列,平面向量及应用
分析:(1)根据平面向量的基本定理和A,B,C三点共线,以及等差数列的性质和求和公式,即可求出定值;
(2)根据等差数列的求和公式得到
an
bn
=
a1+a2n-1
b1+b2n-1
=
S2n-1
T2n-1
=
3ln+101
n+3
=31+
4
n+1
,继而求出正整数n的集合.
解答: 解:(1)∵A,B,C三点共线.
∴?λ∈R,使
AC
AB
OC
-
OA
=λ(
OB
-
OC
),
OC
=(1-λ)
OA
OB

又平面向量的基本定理得,
1-λ=a3
λ=a15
,消去λ得到a3+a15=1,
∵a3+a15=a1+a17=1,
∴S17=
1
2
×17×(a1+a17)=
17
2

即存在n=17时,S17为定值
17
2


(2)由于
an
bn
=
a1+a2n-1
b1+b2n-1
=
S2n-1
T2n-1
=
3ln+101
n+3
=31+
4
n+1

根据题意n+1的可能取值为2,4,
所以n的取值为1或3,
即使 
an
bn
为整数的正整数n的集合为{1,3}
点评:本题主要考查了向量以及等差数列的通项公式和求和公式的应用.考查了学生创造性解决问题的能力,属于中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义:若存在常数k,使得对定义域D内的任意两个x1,x2(x1<x2),均有f(x1)+kx2≤f(x2)+kx1成立,则称函数f(x)在定义域D上满足K条件.若函数y=2012lnx,x∈[1,2012]满足K条件,则常数的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{xn}的各项为不等于1的正数,其前n项和为Sn,点Pn的坐标为(xn,Sn),若所有这样的点Pn(n=1,2,…)都在斜率为k的同一直线(常数k≠0,1)上.
(Ⅰ)求证:数列{xn}是等比数列;
(Ⅱ)设yn=logxn2a2-3a+1满足ys=
1
2t+1
,yt=
1
2s+1
(s,t∈N,且s≠t)共中a为常数,且1<a<
3
2
,试判断,是否存在自然数M,使当n>M时,xn>1恒成立?若存在,求出相应的M;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

利用导数的定义求函数y=
1
x
在x=1处的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足方程x2+y2-4x+1=0,则
y
x+1
的最大值为
 
,最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科实验做)已知f(x)=x2+bx+c为偶函数,曲线y=f(x)过点(2,5),g(x)=(x+a)f(x).
(1)若曲线y=g(x)有平行于x轴的切线,求a的取值范围;
(2)若当x=-1,y=g(x)取得极值,且g(x)-k=0在[-2,-
1
2
]上有两个根,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和公式为Sn=
1
2
×3n+1-
3
2

(1)求数列{an}的通项公式;
(2)令bn=log3
an
81
,求数列 {|bn|}的前n项和Tn(其中,n≥5).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点P(a,2),Q(1,2a-1),若直线PQ的倾斜角θ<135°,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点P的竖坐标恒为2,则动点P的轨迹是(  )
A、平面B、直线
C、不是平面也不是直线D、以上都不对

查看答案和解析>>

同步练习册答案