【题目】地为绿化环境,移栽了银杏树
棵,梧桐树
棵.它们移栽后的成活率分别
为
、
,每棵树是否存活互不影响,在移栽的
棵树中:
(1)求银杏树都成活且梧桐树成活
棵的概率;
(2)求成活的棵树
的分布列与期望.
科目:高中数学 来源: 题型:
【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
为了研究计算的方便,工作人员将上表的数据进行了处理,
得到下表2:
时间代号t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z关于t的线性回归方程;
(Ⅱ)通过(Ⅰ)中的方程,求出y关于x的回归方程;
(Ⅲ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程
,其中
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
为坐标原点,动点
在椭圆
上,过
作
轴的垂线,垂足为
,点
满足
.(Ⅰ)求点
的轨迹方程
;
(Ⅱ)过
的直线
与点
的轨迹交于
两点,过
作与
垂直的直线
与点
的轨迹交于
两点,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设圆
的圆心为
,直线
过点
且与
轴不重合,
交圆
于
两点,过
作
的平行线交
于点
.
(1)证明
为定值,并写出点
的轨迹方程;
(2)设
,过点
作直线
,交点
的轨迹于
两点 (异于
),直线
的斜率分别为
,证明:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“累积净化量(
)”是空气净化器质量的一个重要衡量指标,它是指空气净化器从开始使用到净化效率为
时对颗粒物的累积净化量,以克表示.根据
《空气净化器》国家标准,对空气净化器的累计净化量(
)有如下等级划分:
累积净化量(克) |
|
|
| 12以上 |
等级 |
|
|
|
|
为了了解一批空气净化器(共2000台)的质量,随机抽取
台机器作为样本进行估计,已知这
台机器的累积净化量都分布在区间
中.按照
均匀分组,其中累积净化量在
的所有数据有:
和
,并绘制了如下频率分布直方图:
![]()
(1)求
的值及频率分布直方图中的
值;
(2)以样本估计总体,试估计这批空气净化器(共2000台)中等级为
的空气净化器有多少台?
(3)从累积净化量在
的样本中随机抽取2台,求恰好有1台等级为
的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
,
,则下列说法正确的是( )
A. 把
上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移
个单位长度,得到曲线![]()
B. 把
上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移
个单位长度,得到曲线![]()
C. 把曲线
向右平移
个单位长度,再把得到的曲线上各点横坐标缩短到原来的
,纵坐标不变,得到曲线![]()
D. 把曲线
向右平移
个单位长度,再把得到的曲线上各点横坐标缩短到原来的
,纵坐标不变,得到曲线![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左焦点
与抛物线
的焦点重合,椭圆
的离心率为
,过点
作斜率不为0的直线
,交椭圆
于
两点,点
,且
为定值.
(1)求椭圆
的方程;
(2)求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面是菱形的四棱锥
中,
平面
,
,点
分别为
的中点,设直线
与平面
交于点
.
![]()
(1)已知平面
平面
,求证:
.
(2)求直线
与平面
所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com