精英家教网 > 高中数学 > 题目详情

在平面几何中△ABC的∠C内角平分线CE分AB所成线段的比把这个结论类比到空间:在三棱锥A―BCD中(如图)DEC平分二面角A―CD―B且与AB相交于E,则得到类比的结论是            

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、在平面几何中,有射影定理:“在△ABC中,AB⊥AC,点A在BC边上的射影为D,有AB2=BD•BC.”类比平面几何定理,研究三棱锥的侧面面积与射影面积、底面面积的关系,可以得出的正确结论是:“在三棱锥A-BCD中,AD⊥平面ABC,点A在底面BCD上的射影为O,则有
S△ABC2=S△BCO•S△BCD

查看答案和解析>>

科目:高中数学 来源: 题型:

在△PAB中A1∈PA,B1∈PB,如图(1)所示,则△PA1B1和△PAB具有面积关系
S△PA1B1
S△PAB
=
PA 1PB 1
PA •PB
在平面几何中该关系式已经证明是成立的.请你在三棱锥P-ABC中(图2)写出一个类似的正确结论;并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面几何中有如下结论:正三角形ABC的内切圆面积为S1,外接圆面积为S2,则
S1
S2
=
1
4
,推广到空间可以得到类似结论;已知正四面体P-ABC的内切球体积为V1,外接球体积为V2,则
V1
V2
=
1
27
1
27

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面几何中有如下结论:正三角形ABC的内切圆面积为S1,外切圆面积为S2,则 
s1
s2
=
1
4
,推广到空间可以得到类似结论,已知正四面体P-ABC的内切球体积为V1,外接球体积为V2,则 
v1
v2
=(  )

查看答案和解析>>

同步练习册答案