精英家教网 > 高中数学 > 题目详情
已知函数 则下列关于函数的零点个数的判断正确的是(   )
A.当时,有3个零点;当时,有2个零点
B.当时,有4个零点;当时,有1个零点
C.无论为何值,均有2个零点
D.无论为何值,均有4个零点
B

试题分析:由得:.当时,由得:.所以
;此时,每一段都是单调递增的,且.由此可作出其简图如下图所示(实线部分):

由图可知,当时,该函数有4个零点.
时,时,恒有.所以.
显然上单调递减,在上单调递增. .作出其简图如下图所示(实线部分):

由图可知,当时,该函数有1个零点.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知点,函数的图象上的动点轴上的射影为,且点在点的左侧.设的面积为.

(Ⅰ)求函数的解析式及的取值范围;
(Ⅱ)求函数的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的定义域为,且同时满足以下三个条件:①;②对任意的,都有;③当时总有.
(1)试求的值;
(2)求的最大值;
(3)证明:当时,恒有.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于函数若存在,使得成立,则称的不动点.
已知
(1)当时,求函数的不动点;
(2)若对任意实数,函数恒有两个相异的不动点,求的取值范围;
(3)在(2)的条件下,若图象上两点的横坐标是函数的不动点,且两点关于直线对称,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在股票市场上,投资者常参考股价(每一股的价格)的某条平滑均线的变化情况来决定买入或卖出股票。股民老张在研究股票的走势图时,发现一只股票的均线近期走得很有特点:如果按如图所示的方式建立平面直角坐标系,则股价(元)和时间的关系在段可近似地用解析式来描述,从点走到今天的点,是震荡筑底阶段,而今天出现了明显的筑底结束的标志,且点和点正好关于直线对称。老张预计这只股票未来的走势如图中虚线所示,这里段与段关于直线对称,段是股价延续段的趋势(规律)走到这波上升行

情的最高点。现在老张决定取点,点,点来确定解析式中的常数,并且求得
(Ⅰ)请你帮老张算出,并回答股价什么时候见顶(即求点的横坐标)
(Ⅱ)老张如能在今天以点处的价格买入该股票3000股,到见顶处点的价格全部卖出,不计其它费用,这次操作他能赚多少元?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数在区间上有最大值4,最小值1,
(Ⅰ)求的值。
(Ⅱ)设不等式在区间上恒成立,求实数k的取值范围?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一企业生产的某产品在不做电视广告的前提下,每天销售量为b吨.经市场调查后得到如下规律:若对产品进行电视广告的宣传,每天的销售量S(吨)与电视广告每天的播放量n(次)的关系可用如图所示的程序框图来体现.

(1)试写出该产品每天的销售量S(吨)关于电视广告每天的播放量n(次)的函数关系式;
(2)要使该产品每天的销售量比不做电视广告时的销售量至少增加90%,则每天电视广告的播放量至少需多少次?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某社区要召开群众代表大会,规定各小区每10人推选一名代表,当各小区人数除以10的余数不小于5时再增选一名代表.那么,各小区可推选代表人数y与该小区人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为 (  )
A.y=[]B.y=[]C.y=[]D.y=[]

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则的表达式为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案