精英家教网 > 高中数学 > 题目详情
已知函数的定义域为,且同时满足以下三个条件:①;②对任意的,都有;③当时总有.
(1)试求的值;
(2)求的最大值;
(3)证明:当时,恒有.
(1);(2);(3).

试题分析:(1)抽象函数求在特殊点的值,一般用赋值法,令代入抽象函数可得,又因为,可得.(2)在定义域内求抽象函数最值,一般先判断函数单调性,再求比较定义域端点的函数值和极值点的大小.证明单调性可令,代入得进而得函数为增函数,最大值为
(3)在上证不等式,要分两段.在,所以.在,所以,进而得证.
试题解析:(1)令则有,所以有,有根据条件?可知,故.(也可令
方法一:设,则有,即为增函数(严格来讲为不减函数),所以,故.
方法二:不妨令,所以由?,即增函数(严格来讲为不减函数),所以,故.
(3)当,有,又由?可知,所以有对任意的恒成立.当,又由?可知,所以有对任意的恒成立.综上,对任意的时,恒有.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

湖北省第十四届运动会纪念章委托某专营店销售,每枚进价5元,同时每销售一枚这种纪念章需向荆州筹委会交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为元,为整数.
(1)写出该专营店一年内销售这种纪念章所获利润(元)与每枚纪念章的销售价格(元)的函数关系式(并写出这个函数的定义域);
(2)当每枚纪念章销售价格为多少元时,该特许专营店一年内利润(元)最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数=,=,若曲线和曲线都过点P(0,2),且在点P处有相同的切线.
(Ⅰ)求,,,的值;
(Ⅱ)若时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是偶函数.
(1)求的值;
(2)证明:对任意实数,函数的图像与直线最多只有一个交点;
(3)设若函数的图像有且只有一个公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了降低能损耗,最近上海对新建住宅的屋顶和外墙都要求建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能消耗费用为8万元.设f(x)为隔热层建造费用与20年的能消耗费用之和.
(1)求k的值及f(x)的表达式;
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的零点所在区间是(      )
A.(B.(C.(,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数 则下列关于函数的零点个数的判断正确的是(   )
A.当时,有3个零点;当时,有2个零点
B.当时,有4个零点;当时,有1个零点
C.无论为何值,均有2个零点
D.无论为何值,均有4个零点

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的定义域为D,若存在闭区间[a,b]D,使得函数满足:(1)在[a,b]内是单调函数;(2)在[a,b]上的值域为[2a,2b],则称区间[a,b]为y=的“美丽区间”.下列函数中存在“美丽区间”的是          . (只需填符合题意的函数序号) 
①、;        ②、
③、;        ④、.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义区间的长度均为. 用表示不超过的最大整数,记,其中.设,若用表示不等式解集区间的长度,则当时,有(     )
A.B.C.D.

查看答案和解析>>

同步练习册答案