精英家教网 > 高中数学 > 题目详情
经过平面外一点,和平面内一点与平面垂直的平面有(  )
A.0个B.1个C.无数个D.1个或无数个
D
本题考查线面垂直的判定和性质。
解答:当两点连线不垂直平面时,经过平面外这点,作平面的垂线,仅有一条,过这两点连线和所作的垂线,可确定一个平面,该平面垂直平面
当两点连线垂直平面时,过这两点连线的平面都与平面垂直,可作无数个。故选 D。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知三棱柱,底面三角形为正三角形,侧棱底面的中点,中点.
(Ⅰ) 求证:直线平面
(Ⅱ)求平面和平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


AD=2,PA=2,PD=2,∠PAB=60°。
(1)证明:AD⊥平面PAB;
(2)求异面直线PC与AD所成的角的大小;
(3)求二面角P-BD-A的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
三棱锥中,,

(1) 求证:面
(2) 求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分10分)如图,已知都是边长为的等边三角形,且平面平面,过点平面,且
(1)求证:平面
(2)求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分15分)本题有2小题,第1小题6分,第2小题9分.
如图,在直角梯形中,.将(及其内部)绕所在的直线旋转一周,形成一个几何体.
(1)求该几何体的体积
(2)设直角梯形绕底边所在的直线旋转角)至,问:是否存在,使得.若存在,求角的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,在等腰直角中,为垂足.沿对折,连结,使得
(1)对折后,在线段上是否存在点,使?若存在,求出的长;若不存在,说明理由; 
(2)对折后,求二面角的平面角的正切值.

C

 

              

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
棱锥的底面正方形,侧棱的中点在底面内的射影恰好是正方形的中心顶点在截面的射影恰好是的重心

(1)求直线与底面所成角的正切值;
(2)设,求此四棱锥过点的截面面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,三棱柱的所有棱长均等于1,且
,则该三棱柱的体积是 ▲ 

查看答案和解析>>

同步练习册答案