精英家教网 > 高中数学 > 题目详情
11.已知角α的终边过点P(-3,m),且sinα=$\frac{4}{5}$,cosα=-$\frac{3}{5}$.

分析 由条件利用任意角的三角函数的定义,求得cosα的值.

解答 解:∵角α的终边过点P(-3,m),且sinα=$\frac{m}{\sqrt{{9+m}^{2}}}$=$\frac{4}{5}$,∴m=4,
∴cosα=$\frac{-3}{\sqrt{{9+m}^{2}}}$=-$\frac{3}{5}$,
故答案为:-$\frac{3}{5}$.

点评 本题主要考查任意角的三角函数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.设数列{an}的通项公式为an=sin2n°,该数列的前n项和为Sn,则S89=$\frac{89}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.化简:
(1)$\frac{{a}^{-1}+{b}^{-1}}{{a}^{-1}•{b}^{-1}}$(ab≠0);
(2)$\frac{{a}^{\frac{1}{3}}(a-8b)}{4{b}^{\frac{2}{3}}+2{a}^{\frac{1}{3}}{b}^{\frac{1}{3}}+{a}^{\frac{2}{3}}}$÷(1-$\frac{2{b}^{\frac{1}{3}}}{{a}^{\frac{1}{3}}}$)•a${\;}^{\frac{1}{3}}$(ab≠0,且a≠8b).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设直线l的方程为(m2-2m-3)x+(2m2+m-1)y=2m一6,根据下列条件分别求m的值.
(1)经过定点p(2,-1);
(2)在y轴上的截距为6;
(3)与y轴平行;
(4)与X轴平行.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若ab=1,则a+b的取值范围是(-∞,-2]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ≤$\frac{π}{2}$)的图象上的两个相邻的最高点和最低点的距离为2$\sqrt{2}$,且过点(2,-$\frac{1}{2}$),则函数f(x)=f(x)=sin($\frac{π}{2}$x+$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知△ABC的顶点为A(2,4),B(0,-2),C(-2,3),求:
(Ⅰ)AB边上的中线CM所在直线的方程;
(Ⅱ)AB边上的高线CH所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.将下列根式化为分数指数幂的形式;
(1)$\sqrt{\frac{1}{a}\sqrt{\frac{1}{a}}}$(a>0);
(2)$\frac{1}{\root{3}{x{•(\root{5}{{x}^{2}})}^{2}}}$(x>0);
(3)$\sqrt{a{b}^{3}\sqrt{a{b}^{5}}}$(a>0,b>0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合A={a1,a2,a3,…ak}(k≥2).若对于任意的a∈A.总有-a∈A则 称集合A具有性质P,由A中的元素构成一个相应的集合:
设集合T={(a,b)|a∈A,b∈A,a-b∈A)},d对于集合S={0,1,2,3}和X={-1,2,3},具有性质pP的集合是X写出具有性质P的集合相应的集合T={(2,-1),(2,3)}.

查看答案和解析>>

同步练习册答案