【题目】如图,在四棱柱
中,
平面ABCD,底面ABCD是矩形,
,
,
,M为
的中点.
![]()
(1)求证:D1M//平面BDC1;
(2)若棱
上存在点Q,满足
与平面
所成角的正弦值为
,求异面直线
与BQ所成角的余弦值.
科目:高中数学 来源: 题型:
【题目】盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,再从盒中取出一个球,则此时取出黄色球的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列
对任意连续三项
,均有
,则称该数列为“跳跃数列”.
(1)判断下列两个数列是否是跳跃数列:
①等差数列:
;
②等比数列:
;
(2)若数列
满足对任何正整数
,均有![]()
.证明:数列
是跳跃数列的充分必要条件是
.
(3)跳跃数列
满足对任意正整数
均有
,求首项
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数). 以
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,若直线
与曲线
交于
两点.
(1)若
,求
;
(2)若点
是曲线
上不同于
的动点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过点
的直线l:
与抛物线E:
(
)交于B,C两点,且A为线段
的中点.
(1)求抛物线E的方程;
(2)已知直线
:
与直线l平行,过直线
上任意一点P作抛物线E的两条切线,切点分别为M,N,是否存在这样的实数m,使得直线
恒过定点A?若存在,求出m的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四面体ABCD中,O、E分别是BD、BC的中点,
,
.
(1)求证:
平面BCD;
(2)求异面直线AB与CD所成角的余弦值;
(3)求点E到平面ACD的距离。
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C的方程为
.在以原点O为极点,x轴正半轴为极轴的极坐标系中,P的极坐标为
,直线l过点P.
(1)若直线l与OP垂直,求直线l的直角标方程:
(2)若直线l与曲线C交于A,B两点,且
,求直线l的倾斜角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com