【题目】已知函数.
(1)当时,求证:;
(2)讨论函数在R上的零点个数,并求出相对应的a的取值范围.
【答案】(1)证明见解析;(2)时,函数在上没有零点;当时,函数在上有一个零点;当时,函数在上有两个零点.
【解析】
(1)构造函数,利用导数研究函数的单调性和最小值,证明最小值大于.(2)先利用导数得到的最小值,然后分类讨论,根据零点存在定理,得到每种情况下的零点情况.
(1)当时,,
令,则.
令,得.
当时,,单调递减;当时,,单调递增.
所以是的极小值点,也是最小值点,
即
故当时,成立.
(2) ,由,得.
所以当时,,单调递减;当时,,单调递增.
所以是函数的极小值点,也是最小值点,
即.
当,即时,在上没有零点.
当,即时,在上只有一个零点.
当,即时,因为,
所以在内只有一个零点;
由(1)得,令,得,
所以,于是在内有一个零点;
因此,当时,在上有两个零点.
综上,时,函数在上没有零点;
当时,函数在上有一个零点;
当时,函数在上有两个零点.
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系中,动点与两定点连线的斜率之积为,记点的轨迹为曲线.
(1)求曲线的方程;
(2)若过点的直线与曲线交于两点,曲线上是否存在点使得四边形为平行四边形?若存在,求直线的方程,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数在处取得极大值或极小值,则称为函数的极值点.设函数.
(1)若函数在上无极值点,求的取值范围;
(2)求证:对任意实数,在函数的图象上总存在两条切线相互平行;
(3)当时,若函数的图象上存在的两条平行切线之间的距离为4,问;这样的平行切线共有几组?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了适应新高考改革,某校组织了一次新高考质量测评(总分100分),在成绩统计分析中,抽取12名学生的成绩以茎叶图形式表示如图,学校规定测试成绩低于87分的为“未达标”,分数不低于87分的为“达标”.
(1)求这组数据的众数和平均数;
(2)在这12名学生中从测试成绩介于80~90之间的学生中任选2人,求至少有1人“达标”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com