精英家教网 > 高中数学 > 题目详情

【题目】设数列是等差数列,数列是各项都为正数的等比数列,且.

1)求数列的通项公式;

2)设,试比较的大小.

【答案】(1)an2n1bn3n.(2)当n1时,Tn2anbn;当n2时,Tn2anbn.

【解析】

1)用等差数列和等比数列的基本量法求解;

2)用错位相减法求和.然后用作差法比较大小.

1)设等差数列{an}公差为d,等比数列{bn}公比为q.

a11b13a2+b330a3+b214

,化为2q2q150q3舍去).

q3d2.

an1+2n1)=2n1bn3n.

2cn=(an+1bn2n3n

Tn23+2×32+…+n3n),

3Tn2[32+2×33+…+n1×3n+n3n+1]

∴﹣2Tn23+32+…+3nn×3n+1)=212n×3n+13

Tn.

2anbn22n1×3n.

Tn2anbn22n1×3n

n1时,Tn2anbn

n≥2时,Tn2anbn.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知直线和直线,射线的一个法向量为,点为坐标原点,且,直线之间的距离为2,点分别是直线上的动点,于点于点.

1)若,求的值;

2)若,且,试求的最小值;

3)若,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次体育兴趣小组的聚会中,要安排6人的座位,使他们在如图所示的6个椅子中就坐,且相邻座位(1223)上的人要有共同的体育兴趣爱好.现已知这6人的体育兴趣爱好如下表所示,且小林坐在1号位置上,则4号位置上坐的是

小林

小方

小马

小张

小李

小周

体育兴趣爱好

篮球,网球,羽毛球

足球,排球,跆拳道

篮球,棒球,乒乓球

击剑,网球,足球

棒球,排球,羽毛球

跆拳道,击剑,自行车

A.小方B.小张C.小周D.小马

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的前n项和为Sn,公比q0S2=2a2-2S3=a4-2,数列{an}满足a2=4b1nbn+1-n+1bn=n2+n,(nN*.

1)求数列{an}的通项公式;

2)证明数列{}为等差数列;

3)设数列{cn}的通项公式为:Cn=,其前n项和为Tn,求T2n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调区间;

(2)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】光伏发电是利用太阳能电池及相关设备将太阳光能直接转化为电能.近几年在国内出台的光伏发电补贴政策的引导下,某地光伏发电装机量急剧上涨,如下表:

某位同学分别用两种模型:①进行拟合,得到相应的回归方程并进行残差分析,残差图如下(注:残差等于):

经过计算得

(1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由.

(2)根据(1)的判断结果及表中数据建立y关于x的回归方程,并预测该地区2020年新增光伏装机量是多少.(在计算回归系数时精确到0.01)

附:归直线的斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求证:

(2)讨论函数在R上的零点个数,并求出相对应的a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在椭圆上,为坐标原点,直线的斜率与直线的斜率乘积为.

(1)求椭圆的方程;

(2)不经过点的直线)与椭圆交于两点,关于原点的对称点为(与点不重合),直线轴分别交于两点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将正方形沿对角线折叠,使平面平面, 若直线平面

求证:直线平面

求三棱锥的体积.

查看答案和解析>>

同步练习册答案