精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的前n项的和为Sn , 且Sn+ an=1(n∈N*
(1)求{an}的通项公式;
(2)设bn=﹣log3(1﹣Sn),设Cn= ,求数列{Cn}的前n项的和Tn

【答案】
(1)解:Sn+ an=1①(n∈N*

可得a1=S1

即有a1+ a1=1,可得a1=

当n≥2,n∈N*,即有Sn1+ an1=1,②

an=Sn﹣Sn1

①﹣②可得Sn﹣Sn1+ an an1=0,

即有an= an1

则an=a1qn1= n1=2( n,n∈N*


(2)解:Sn+ an=1

可得Sn=1﹣ an=1﹣( n

bn=﹣log3(1﹣Sn)=﹣log3n=n,

Cn= = =

前n项的和Tn= + + +…+ +

+ =


【解析】(1)运用数列的递推式:a1=S1,n≥2,n∈N*,an=Sn﹣Sn1,结合等比数列的定义和通项公式即可得到所求通项;(2)Sn=1﹣ an=1﹣( n,bn=﹣log3(1﹣Sn)=﹣log3n=n,Cn= = =

由数列的求和方法:裂项相消求和,化简整理即可得到所求和.

【考点精析】本题主要考查了数列的前n项和和数列的通项公式的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx﹣ x2+bx存在极小值,且对于b的所有可能取值,f(x)的极小值恒大于0,则a的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知g(x)是各项系数均为整数的多项式,f(x)=2x2﹣x+1,且满足f(g(x))=2x4+4x3+13x2+11x+16,则g(x)的各项系数之和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体 中, 的中点为 的中点为 ,则异面直线 所成的角是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知 是上、下底边长分别为2和6,高为 的等腰梯形,将它沿对称轴 折叠,使二面角 为直二面角.

(1)证明:
(2)求二面角 的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中 ,若对任意的非零实数 ,存在唯一的非零实数 ,使得 成立, . (并且写出 的取值范围)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为梯形,AD∥BC,AB=BC=CD=1,DA=2,DP⊥平面ABP,O,M分别是AD,PB的中点.
(Ⅰ)求证:PD∥平面OCM;
(Ⅱ)若AP与平面PBD所成的角为60°,求线段PB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,动物园要建造一面靠墙的两间相同的矩形熊猫居室,如果可供建造围墙的材料总长是

(1)用宽 (单位 )表示所建造的每间熊猫居室的面积 (单位 );
(2)怎么设计才能使所建造的每间熊猫居室面积最大?并求出每间熊猫居室的最大面积?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABCA(2,-1)B(4,3)C(3,-2)

(1)BC边上的高所在直线的一般式方程;

(2)ABC的面积.

查看答案和解析>>

同步练习册答案