精英家教网 > 高中数学 > 题目详情
8.已知数列{an}中,a1=4,an=an-1+2n-1+3(n≥2,n∈N*).
(1)证明数列{an-2n}是等差数列,并求{an}的通项公式;
(2)设bn=$\frac{a_n}{2^n}$,求bn的前n和Sn

分析 (1)利用已知条件转化推出$\left\{{{a_n}-{2^n}}\right\}$是以2为首项,3为公差的等差数列,然后求解通项公式.
(2)化简bn=$\frac{a_n}{2^n}$,然后利用错位相减法求和求解即可.

解答 解:(1)证明:当n≥2时,${a_n}={a_{n-1}}+{2^{n-1}}+3={a_{n-1}}+{2^n}-{2^{n-1}}+3$,
∴${a_n}-{2^n}-({a_{n-1}}-{2^{n-1}})=3$,
又a1=4,∴a1-2=2,
故$\left\{{{a_n}-{2^n}}\right\}$是以2为首项,3为公差的等差数列,
∴${a_n}-{2^n}=2+(n-1)×3=3n-1$,
∴${a_n}={2^n}+3n-1$.
(2)${b_n}=\frac{a_n}{2^n}=\frac{{{2^n}+3n-1}}{2^n}=1+\frac{3n-1}{2^n}$,
∴${S_n}=(1+\frac{2}{2})+(1+\frac{5}{2^2})+…+(1+\frac{3n-1}{2^n})$=$n+(\frac{2}{2}+\frac{5}{2^2}+…+\frac{3n-1}{2^n})$,
令${T}_{n}=\frac{2}{2}+\frac{5}{{2}^{2}}+…+\frac{3n-1}{{2}^{n}}$,①
则$\frac{1}{2}{T_n}=\frac{2}{2^2}+\frac{5}{2^3}+…+\frac{3n-1}{{{2^{n+1}}}}$,②
①-②得:$\frac{1}{2}{T_n}=1+\frac{3}{2^2}+\frac{3}{2^3}+…+\frac{3}{2^n}-\frac{3n-1}{{{2^{n+1}}}}$,
=$1+3×\frac{{\frac{1}{4}[{1-{{(\frac{1}{2})}^{n-1}}}]}}{{1-\frac{1}{2}}}-\frac{3n-1}{{{2^{n+1}}}}$=$\frac{5}{2}-\frac{3n+5}{{{2^{n+1}}}}$,
∴${S_n}=n+5-\frac{3n+5}{2^n}$.

点评 本题考查数列的递推关系式的应用,数列求和,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知直线(k+1)x+ky-1=0与两坐标轴围成的三角形面积为Sk,则S1+S2+…+Sk=$\frac{k}{2(k+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.双曲线方程为$\frac{x^2}{6}-\frac{y^2}{6}=1$,那么它的离心率为(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=sin(2x+φ1),g(x)=cos(4x+φ2),|φ1|≤$\frac{π}{2}$,|φ2|≤$\frac{π}{2}$.
命题?①:若直线x=φ是函数f(x)和g(x)的对称轴,则直线x=$\frac{1}{2}$kπ+φ(k∈Z)是函数g(x)的对称轴;
命题?②:若点P(φ,0)是函数f(x)和g(x)的对称中心,则点Q(${\frac{kπ}{4}$+φ,0)(k∈Z)是函数f(x)的中心对称.(  )
A.命题①②??都正确B.命题①②??都不正确
C.命题?①正确,命题?②不正确D.命题?①不正确,命题?②正确

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知α,β,γ是三个不同的平面,l1,l2是两条不同的直线,下列命题是真命题的是(  )
A.若α⊥γ,β⊥γ,则α∥βB.若l1∥α,l1⊥β,则α∥β
C.若α∥β,l1∥α,l2∥β,则l1∥l2D.若α⊥β,l1⊥α,l2⊥β,则l1⊥l2
E.若α⊥β,l1⊥α,l2⊥β,则l1⊥l2F.若α⊥β,l1⊥α,l2⊥β,则l1⊥l2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义在R上的函数f(x)的导函数为f'(x),已知xf'(x)+f(x)<-f'(x),f(2)=$\frac{1}{3}$,则不等式f(ex-2)-$\frac{1}{{{e^x}-1}}$<0(其中e为自然对数的底数)的解集为(  )
A.(0,ln4)B.(-∞,0)∪(ln4,+∞)C.(ln4,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知三点A(3,2),B(5,-3),C(-1,3),以P(2,-1)为圆心能否做一个圆,使A,B,C三点中一点在圆外,一点在圆上,一点在圆内?若存在,求出这个圆的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=$\left\{\begin{array}{l}{{3}^{x-2},(x<2)}\\{lo{g}_{3}({x}^{2}-1),(x≥2)}\end{array}\right.$,若f(a)=1,则a的值是(  )
A.1或2B.1C.2D.1或-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=2ax2-x-1在区间(0,1)内恰有一个零点,则实数a的取值范围是(  )
A.(-∞,-1)B.(1,+∞)C.(-1,1)D.[0,1)

查看答案和解析>>

同步练习册答案