精英家教网 > 高中数学 > 题目详情
3.已知α,β,γ是三个不同的平面,l1,l2是两条不同的直线,下列命题是真命题的是(  )
A.若α⊥γ,β⊥γ,则α∥βB.若l1∥α,l1⊥β,则α∥β
C.若α∥β,l1∥α,l2∥β,则l1∥l2D.若α⊥β,l1⊥α,l2⊥β,则l1⊥l2
E.若α⊥β,l1⊥α,l2⊥β,则l1⊥l2F.若α⊥β,l1⊥α,l2⊥β,则l1⊥l2

分析 反例判断A的错误;利用直线与平面的关系判断B错误;反例判断C错误;直线与平面垂直判断D正误即可.

解答 解:α,β,γ是三个不同的平面,l1,l2是两条不同的直线,
对于A,α⊥γ,β⊥γ,则α∩β=a也可能平行,所以A不正确.
对于B,若l1∥α,l1⊥β,则α⊥β,所以B不正确;
对于C,α∥β,l1∥α,l2∥β,则l1∥l2,也可能相交也可能异面,所以C不正确;
对于D,若α⊥β,l1⊥α,l2⊥β,则l1⊥l2,l1与l2是平面的法向量,显然正确;
故选:D.

点评 本题考查直线与直线,平面与平面以及直线与平面的位置关系的应用,考查空间想象能力以及基本知识的应用,难度比较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知抛物线y2=2x,点P为抛物线上任意一点,P在y轴上的射影为Q,点M(2,3),则PQ与PM的长度之和的最小值为$\frac{3\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列有关命题的说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B.命题“若x=y,则sinx=siny”的逆否命题为假命题
C.命题“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1<0”
D.△ABC中,A>B是sinA>sinB的充分必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx-kx+1.
(1)求函数f(x)的单调区间;
(2)若f(x)≤0恒成立,试确定实数k的取值范围;
(3)证明:$\frac{ln2}{3}+\frac{ln3}{4}+…+\frac{lnn}{n+1}<\frac{{n({n-1})}}{4}({n∈{N_+},n>1})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知P在抛物线y2=4x上,那么点P到点Q(2,1)的距离与点P到抛物线焦点距离之和取得最小值为(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}中,a1=4,an=an-1+2n-1+3(n≥2,n∈N*).
(1)证明数列{an-2n}是等差数列,并求{an}的通项公式;
(2)设bn=$\frac{a_n}{2^n}$,求bn的前n和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图为从空中某个角度俯视北京奥运会主体育场“鸟巢”顶棚所得的局部示意图,在平面直角坐标系中,下列给定的一系列直线中(其中θ为参数,θ∈R),能形成这种效果的只可能是(  )
A.y=xsinθ+1B.y=x+cosθC.xcosθ+ysinθ+1=0D.y=xcosθ+sinθ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=-tan($\frac{π}{3}$-2x)的单调递增区间是(  )
A.[$\frac{kπ}{2}$-$\frac{π}{12}$,$\frac{kπ}{2}$+$\frac{5π}{12}$](k∈Z)B.($\frac{kπ}{2}$-$\frac{π}{12}$,$\frac{kπ}{2}$+$\frac{5π}{12}$)(k∈Z)
C.(kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$)(k∈Z)D.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若点P在$\frac{2π}{3}$角的终边上,且P的坐标为(-1,y),则y等于(  )
A.$\sqrt{3}$B.-$\sqrt{3}$C.-$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

同步练习册答案