【题目】某汽车厂上年度生产汽车的投入成本为10万元/辆,出厂价为12万元/辆,年销售量为10000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为(),则出厂价相应地提高比例为,同时预计年销售量增加的比例为,已知年利润=(出厂价-投入成本)×年销售量.
(1)写出本年度预计的年利润与投入成本增加的比例的关系式;
(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比应在什么范围内?
科目:高中数学 来源: 题型:
【题目】关于函数有下述四个结论,其中正确的结论是( )
A.f(x)是偶函数B.f(x)在区间(,)单调递增
C.f(x)在有4个零点D.f(x)的最大值为2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的一个顶点为,且焦距为,直线交椭圆于、两点(点、与点不重合),且满足.
(1)求椭圆的标准方程;
(2)为坐标原点,若点满足,求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某房产中介公司2017年9月1日正式开业,现对其每个月的二手房成交量进行统计,表示开业第个月的二手房成交量,得到统计表格如下:
(1)统计中常用相关系数来衡量两个变量之间线性关系的强弱.统计学认为,对于变量,如果,那么相关性很强;如果,那么相关性一般;如果,那么相关性较弱.通过散点图初步分析可用线性回归模型拟合与的关系.计算的相关系数,并回答是否可以认为两个变量具有很强的线性相关关系(计算结果精确到0.01)
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程(计算结果精确到0.01),并预测该房产中介公司2018年6月份的二手房成交量(计算结果四舍五入取整数).
参考数据:,,,,.
参考公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆锥底面半径,为底面圆圆心,点Q为半圆弧的中点,点为母线的中点,与所成的角为,求:
(1)圆锥的侧面积;
(2)两点在圆锥面上的最短距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】说明下述命题是否可以看成判定定理或性质定理,如果可以,说出其中涉及的充分条件或必要条件:
(1)形如(是非零常数)的函数是二次函数;
(2)菱形的对角线互相垂直.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
如图,四棱锥P -ABCD的底面是矩形,侧面PAD是正三角形,
且侧面PAD⊥底面ABCD,E 为侧棱PD的中点。
(1)求证:PB//平面EAC;
(2)求证:AE⊥平面PCD;
(3)当为何值时,PB⊥AC ?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com