精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的一个顶点为,且焦距为,直线交椭圆两点(点与点不重合),且满足.

(1)求椭圆的标准方程;

(2)为坐标原点,若点满足,求直线的斜率的取值范围.

【答案】(1) (2)

【解析】

(1)已知条件有,从而易得椭圆标准方程;

(2)分类若直线斜率不存在,则可求得点坐标,得斜率;若线斜率存在,设,直线,代入椭圆方程应用韦达定理得,由关系,再由已知用表示出点坐标,计算,并代入及刚才的关系式,可把表示为的函数,从而可得其取值范围.

(1)依题意,,则

解得,所以椭圆的标准方程为.

(2)当直线垂直于轴时,由消去整理得

解得,此时,直线的斜率为

当直线不垂直于轴时,设,直线

,消去整理得

依题意,即

,所以

所以,即,解得满足

所以 ,故.

故直线的斜率

时,,此时

时,,此时

综上,直线的斜率的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对某电子元件进行寿命追踪调查,情况如下:

寿命分组/h

100~200

200~300

300~400

400~500

500~600

个数

20

30

80

40

30

1)求下表中的xy

寿命分组/h

频数

频率

100~200

20

0.10

200~300

30

x

300~400

80

0.40

400~500

40

0.20

500~600

30

y

合计

200

1

2)从频率分布直方图估计电子元件寿命的第80百分位数是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,下列结论中错误的是( )

A. 既是偶函数又是周期函数 B. 的最大值是1

C. 的图像关于点对称 D. 的图像关于直线对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年为我国改革开放40周年,某事业单位共有职工600人,其年龄与人数分布表如下:

年龄段

人数(单位:人)

180

180

160

80

约定:此单位45岁59岁为中年人,其余为青年人,现按照分层抽样抽取30人作为全市庆祝晚会的观众.

(1)抽出的青年观众与中年观众分别为多少人?

(2)若所抽取出的青年观众与中年观众中分别有12人和5人不热衷关心民生大事,其余人热衷关心民生大事.完成下列2×2列联表,并回答能否有90%的把握认为年龄层与热衷关心民生大事有关?

热衷关心民生大事

不热衷关心民生大事

总计

青年

12

中年

5

总计

30

(3)若从热衷关心民生大事的青年观众(其中1人擅长歌舞,3人擅长乐器)中,随机抽取2人上台表演节目,则抽出的2 人能胜任的2人能胜任才艺表演的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】互联网正在改变着人们的生活方式,在日常消费中手机支付正逐渐取代现金支付成为人们首选的支付方式. 某学生在暑期社会活动中针对人们生活中的支付方式进行了调查研究. 采用调查问卷的方式对100名18岁以上的成年人进行了研究,发现共有60人以手机支付作为自己的首选支付方式,在这60人中,45岁以下的占,在仍以现金作为首选支付方式的人中,45岁及以上的有30人.

(1)从以现金作为首选支付方式的40人中,任意选取3人,求这3人至少有1人的年龄低于45岁的概率;

(2)某商家为了鼓励人们使用手机支付,做出以下促销活动:凡是用手机支付的消费者,商品一律打八折. 已知某商品原价50元,以上述调查的支付方式的频率作为消费者购买该商品的支付方式的概率,设销售每件商品的消费者的支付方式都是相互独立的,求销售10件该商品的销售额的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,设的定义域为.

1)求

2)用定义证明上的单调性,并直接写出上的单调性;

3)若对一切恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车厂上年度生产汽车的投入成本为10万元/辆,出厂价为12万元/辆,年销售量为10000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为),则出厂价相应地提高比例为,同时预计年销售量增加的比例为,已知年利润=(出厂价-投入成本)×年销售量.

1)写出本年度预计的年利润与投入成本增加的比例的关系式;

2)为使本年度的年利润比上年度有所增加,则投入成本增加的比应在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】火电厂、核电站的循环水自然通风冷却塔是一种大型薄壳型构筑物。建在水源不十分充足的地区的电厂,为了节约用水,需建造一个循环冷却水系统,以使得冷却器中排出的热水在其中冷却后可重复使用,大型电厂采用的冷却构筑物多为双曲线型冷却塔.此类冷却塔多用于内陆缺水电站,其高度一般为75~150米,底边直径65~120米. 双曲线型冷却塔比水池式冷却构筑物占地面积小,布置紧凑,水量损失小,且冷却效果不受风力影响;它比机力通风冷却塔维护简便,节约电能;但体形高大,施工复杂,造价较高.(以上知识来自百度,下面题设条件只是为了适合高中知识水平,其中不符合实际处请忽略.)

(1)如图为一座高100米的双曲线冷却塔外壳的简化三视图(忽略壁厚),其底面直径大于上底直径,已知其外壳主视图与左视图中的曲线均为双曲线,高度为100,俯视图为三个同心圆,其半径分别40,30,试根据上述尺寸计算视图中该双曲线的标准方程(为长度单位米);

(2)试利用课本中推导球体积的方法,利用圆柱和一个倒放的圆锥,计算封闭曲线:,绕轴旋转形成的旋转体的体积多少?(用表示).(用积分计算不得分)现已知双曲线冷却塔是一个薄壳结构,为计算方便设其内壁所在曲线也为双曲线,其壁最厚为0.4(底部),最薄处厚度为0.3(喉部,即左右顶点处),试计算该冷却塔内壳所在的双曲线标准方程是?并计算本题中的双曲线冷却塔的建筑体积(内外壳之间)大约是多少;(计算时取3.14159,保留到个位即可)

(3)冷却塔体型巨大,造价相应高昂,本题只考虑地面以上部分的施工费用(建筑人工和辅助机械)的计算,钢筋土石等建筑材料费用和和其它设备等施工费用不在本题计算范围内.超高建筑的施工(含人工辅助机械等)费用随着高度的增加而增加,现已知:距离地面高度30米(含30米)内的建筑,每立方米的施工费用平均为:400元/立方米;30米到40米(含40米)每立方米的施工费用为800元/立方米;40米以上,平均高度每增加1米,每立方米的施工费用增加100元.试计算建造本题中冷却塔的施工费用(精确到万元).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体中,,点的中点.

(1)求证:直线平面

(2)求证:平面平面

(3)求直线与平面的夹角.

查看答案和解析>>

同步练习册答案