精英家教网 > 高中数学 > 题目详情
10.某校为调查高中生选修课的选修倾向与性别关系,随机抽取50名学生,得到如表的数据表:
倾向“平面几何选讲”倾向“坐标系与参数方程”倾向“不等式选讲”合计
男生164626
女生481224
合计20121850
(Ⅰ)根据表中提供的数据,选择可直观判断“选课倾向与性别有关系”的两种,作为选课倾向的变量的取值,并分析哪两种选择倾向与性别有关系的把握大;
(Ⅱ)在抽取的50名学生中,按照分层抽样的方法,从倾向“平面几何选讲”与倾向“坐标系与参数方程”的学生中抽取8人进行问卷.若从这8人中任选3人,记倾向“平面几何选讲”的人数减去与倾向“坐标系与参数方程”的人数的差为ξ,求ξ的分布列及数学期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+b)(b+d)}$.
P(k2≤k00.1000.0500.0100.0050.001
k02.7063.8416.6357.87910.828

分析 (Ⅰ)利用K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+b)(b+d)}$,求出K2,与临界值比较,即可得出结论;
(Ⅱ)倾向“平面几何选讲”与倾向“坐标系与参数方程”的学生人数的比例为20:12=5:3,从中抽取8人进行问卷,人数分别为5,3,由题意,ξ=-3,-1,1,3,求出相应的概率,即可求ξ的分布列及数学期望.

解答 解:(Ⅰ)选倾向“坐标系与参数方程”与倾向“不等式选讲”,k=0,所以这两种选择与性别无关;
选倾向“坐标系与参数方程”与倾向“平面几何选讲”,K2=$\frac{32(16×8-4×4)^{2}}{20×12×20×12}$≈6.969>6.635,
∴有99%的把握认为选倾向“坐标系与参数方程”与倾向“平面几何选讲”与性别有关;
选倾向“平面几何选讲”与倾向“不等式选讲”,K2=$\frac{38×(16×12-6×4)^{2}}{20×18×22×16}$≈8.464>7.879,
∴有99.5%的把握认为选倾向“平面几何选讲与倾向“不等式选讲”与性别有关,
综上所述,选倾向“平面几何选讲与倾向“不等式选讲”与性别有关的把握最大;
(Ⅱ)倾向“平面几何选讲”与倾向“坐标系与参数方程”的学生人数的比例为20:12=5:3,从中抽取8人进行问卷,人数分别为5,3,
由题意,ξ=-3,-1,1,3,则
P(ξ=-3)=$\frac{{C}_{3}^{3}}{{C}_{8}^{3}}$=$\frac{1}{56}$,P(ξ=-1)=$\frac{{C}_{5}^{1}{C}_{3}^{2}}{{C}_{8}^{3}}$=$\frac{15}{56}$,P(ξ=1)=$\frac{{C}_{5}^{2}{C}_{3}^{1}}{{C}_{8}^{3}}$=$\frac{30}{56}$,P(ξ=1)=$\frac{{C}_{5}^{3}}{{C}_{8}^{3}}$=$\frac{10}{56}$,
ξ的分布列

 ξ-3-1 1 3
 P $\frac{1}{56}$ $\frac{15}{56}$ $\frac{30}{56}$ $\frac{10}{56}$
数学期望Eξ=(-3)×$\frac{1}{56}$+(-1)×$\frac{15}{56}$+1×$\frac{30}{56}$+3×$\frac{10}{56}$=$\frac{3}{4}$.

点评 本题主要考查独立性检验、分层抽样、离散型随机变量的分布列与数学期望,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.在直三棱柱ABC-A1B1C1中,BC=4,∠BAC=90°,AA1=2,则此三棱柱外接球的表面积为20π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知正三角形ABC边长为2,将它沿高AD翻折,使点B与点C间的距离为$\sqrt{3}$,此时四面体ABCD的外接球的表面积为7π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如表为吸烟与患病之间的二联表:
患病(人数)不患病(人数)合计
吸烟(人数)aba+b
不吸烟(人数)cdc+d
合计a+cb+dn=a+b+c+d
根据如表,回答下列问题:
(Ⅰ)试根据上表,用含a,b,c,d,n的式子表示人群中患病的频率为$\frac{a+c}{n}$;在(a+b)个人中患病的频数为$\frac{(a+b)(a+c)}{n}$;在(a+b)个人中不患病的频数为$\frac{(a+b)(b+d)}{n}$;在(c+d)个人中患病的频数为$\frac{(a+c)(c+d)}{n}$;在(c+d)人中不患病的频数为$\frac{(b+d)(c+d)}{n}$.
(Ⅱ)根据χ2=$\frac{n(ad-bc)^{2}}{(a+b)(b+d)(c+d)(a+c)}$以及临界值表,若a=40,b=10,c=30,d=20,能否有97.5%以上的把握认为吸烟与患病有关?
P(χ2≥χ00.50.40.250.150.10
χ00.4550.7081.3232.7022.706
P(χ2≥χ00.050.0250.0100.0050.001
χ03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒100粒豆子,落在阴影区域内的豆子共60粒,据此估计阴影区域的面积为$\frac{12}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设不等式组$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离小于1的概率是(  )
A.$\frac{π}{4}$B.$\frac{π-2}{2}$C.$\frac{π}{6}$D.$\frac{4-π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若直线的参数方程为$\left\{\begin{array}{l}x=2-3t\\ y=1+2t\end{array}\right.$(t为参数),则直线的普通方程为(  )
A.2x+3y-7=0B.2x+3y-1=0C.2x-3y+1=0D.2x-3y+7=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)已知a,b∈(0,+∞),求证:x,y∈R,有$\frac{x^2}{a}$+$\frac{y^2}{b}$≥$\frac{{{{(x+y)}^2}}}{a+b}$;
(2)若0<a<2,0<b<2,0<c<2,求证:(2-a)b,(2-b)c,(2-c)a不能同时大于1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={x∈R|0<ax+1≤5},B={x∈R|-$\frac{1}{2}$<x≤2}(a≠0).
(Ⅰ)若A=B,求出实数a的值;
(Ⅱ)若命题p:x∈A,命题q:x∈B且p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案