精英家教网 > 高中数学 > 题目详情
8.计算
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-7.8)0-(3$\frac{3}{8}$)${\;}^{\frac{2}{3}}$+($\frac{2}{3}$)-2
(2)(lg2)2+lg2•lg5+$\frac{lo{g}_{3}5}{lo{g}_{3}10}$.

分析 (1)利用有理指数幂的运算法则化简求解即可.
(2)利用导数的运算法则化简求解即可.

解答 (本小题满分10分)
解:(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-7.8)0-(3$\frac{3}{8}$)${\;}^{\frac{2}{3}}$+($\frac{2}{3}$)-2
=$(\frac{9}{4})^{\frac{1}{2}}-1-{(\frac{27}{8})}^{\frac{2}{3}}+{(\frac{3}{2})}^{2}$
=$\frac{3}{2}-1-(\frac{3}{2})^{2}+(\frac{3}{2})^{2}$=$\frac{1}{2}$.…(5分)
(2)(lg2)2+lg2•lg5+$\frac{lo{g}_{3}5}{lo{g}_{3}10}$=lg2(lg2+lg5)+lg5=lg2+lg5=lg10=1.…(10分)

点评 本题考查有理指数幂以及对数运算法则的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.函数y=$\frac{ln(x-1)}{\sqrt{2-x}}$的定义域为(  )
A.(-∞,2)B.(-1,2)C.(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ln(ex+a)(a为常数,e为自然对数的底数)是实数集R上的奇函数,函数g(x)=λf(x)+sinx在区间[-1,1]上是减函数.
(1)求实数a的值;
(2)若g(x)≤t2+λt+1在x∈[-1,1]上恒成立,求实数t的取值范围;
(3)讨论关于x的方程$\frac{lnx}{f(x)}={x^2}-2ex+m$的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下面关于集合的表示正确的个数是(  )
?①{2,3}≠{3,2};②?{(x,y)|x+y=1}={y|x+y=1};③{x|x>1}={y|y>1}.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)的定义域为R+,且对一切正实数x,y都有f(x+y)=f(x)+f(y)成立,若f(4)=2,求f(2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.等比数列{an}的各项均为正数,且a1a5=4,则a1a2a3a4a5=32.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列命题中的真命题是(  )
A.a>b>0是1a<1b的充要条件
B.若a+b+c=0,则a>b>c是ac<0的充分而不必要条件
C.ac2>bc2是a>b的必要而不充分条件
D.a>b且c>d是a-c>b-d的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2cos($\frac{π}{3}$-$\frac{1}{2}$x).
(1)求f(x)在区间[0,2π]上的值域;
(2)求f(x)在区间[0,2π]上的单调减区间;
(3)若f(x)向右移φ个单位得到函数g(x),g(x)满足g(x)≤g($\frac{2π}{3}$),求φ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ<$\frac{π}{2}$)的部分图象如图所示.
(1)求f(x)的解析式;
(2)将y=f(x)的图象向右平移φ个单位长度,所得函数y=g(x)的图象关y轴对称,求φ的最小正值.

查看答案和解析>>

同步练习册答案