精英家教网 > 高中数学 > 题目详情

(本题满分12分)

如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.

(1)证明:平面PQC⊥平面DCQ;

(2)求二面角Q-BP-C的余弦值.

 

【答案】

(I)建立空间直角坐标系后,计算证得PQ⊥DQ,PQ⊥DC.PQ⊥平面DCQ.

再据PQ平面PQC,得到平面PQC⊥平面DCQ.   (II) 

【解析】

试题分析:如图,以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D—xyz.

(I)依题意有Q(1,1,0),C(0,0,1),P(0,2,0).

所以

即PQ⊥DQ,PQ⊥DC.

故PQ⊥平面DCQ.

又PQ平面PQC,所以平面PQC⊥平面DCQ.  …………6分

(II)依题意有B(1,0,1),

是平面PBC的法向量,则

因此可取

设m是平面PBQ的法向量,则

可取

故二面角Q—BP—C的余弦值为   ………………12分

考点:本题主要考查立体几何中的垂直关系,角的计算,空间向量的应用。

点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,利用向量则能简化证明过程。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分)已知数列是首项为,公比的等比数列,,

,数列.

(1)求数列的通项公式;(2)求数列的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题

(本题满分12分,第1小题6分,第2小题6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB

(2) 若,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题

(本题满分12分)

设函数为常数),且方程有两个实根为.

(1)求的解析式;

(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题

(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)

如图所示,直二面角中,四边形是边长为的正方形,上的点,且⊥平面

(Ⅰ)求证:⊥平面

(Ⅱ)求二面角的大小;

(Ⅲ)求点到平面的距离.

 

查看答案和解析>>

同步练习册答案