精英家教网 > 高中数学 > 题目详情

【题目】给出下列命题:

(1)终边在y轴上的角的集合是

(2)把函数f(x)=2sin2x的图象沿x轴方向向左平移个单位后,得到的函数解析式可以表示成f(x)=2sin

(3)函数f(x)=sinx的值域是[-1,1];

(4)已知函数f(x)=2cosx,若存在实数x1x2,使得对任意的实数x都有成立,则的最小值为2π.

其中正确的命题的序号为________

【答案】(2)

【解析】(1)k=2α=π,其终边在x轴上,所以不对;

(2)由三角函数的变换可知正确;

(3)f(x)=sinx,所以函数f(x)的值域为[0,1],所以不对;

(4)x1=0,x2=π时满足题意,此时|x1x2|=π,所以(4)不对.

故答案为:(2).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知一个圆经过坐标原点和点(20),且圆心C在直线y=2x上.

1)求圆C的方程;

2)过点P-22)作圆C的切线PAPB,求直线PAPB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位安排7位员工对一周的7个夜晚值班,每位员工值一个夜班且不重复值班,其中员工甲必须安排在星期一或星期二值班,员工乙不能安排在星期二值班,员工丙必须安排在星期五值班,则这个单位安排夜晚值班的方案共有(

A. 96B. 144C. 200D. 216

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】符号表示不大于x的最大整数,例如:.

(1)解下列两个方程

(2)设方程: 的解集为A,集合,求实数k的取值范围;

(3)求方程的实数解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“日行一万步,健康你一生”的养生观念已经深入人心,由于研究性学习的需要,某大学生收集了手机“微信运动”团队中特定甲、乙两个班级名成员一天行走的步数,然后采用分层抽样的方法按照 分层抽取了20名成员的步数,并绘制了如下尚不完整的茎叶图(单位:千步):

已知甲、乙两班行走步数的平均值都是44千步.

(1)求的值;

(2)(ⅰ)若,求甲、乙两个班级100名成员中行走步数在 各层的人数;

(ⅱ)若估计该团队中一天行走步数少于40千步的人数比处于千步的人数少12人,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求直线的直角坐标方程及曲线的普通方程;

(2)设是曲线上的一动点,求到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“双十一”期间,某淘宝店主对其商品的上架时间(小时)和销售量(件)的关系作了统计,得到了如下数据并研究.

上架时间

2

4

6

8

10

12

销售量

64

138

205

285

360

430

(1)求表中销售量的平均数和中位数;

(2)① 作出散点图,并判断变量是否线性相关?若研究的方案是先根据前5组数据求线性回归方程,再利用第6组数据进行检验,求线性回归方程

②若根据①中线性回归方程得到商品上架12小时的销售量的预测值与检测值不超过3件,则认为得到的线性回归方程是理想的,试问:①中的线性回归方程是否理想.

附:线性回归方程中, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知 分别为椭圆 的上、下焦点, 是抛物线 的焦点,点在第二象限的交点,且

(1)求椭圆的方程;

(2)与圆相切的直线 (其中)交椭圆于点 ,若椭圆上一点满足,求实数的取值范围.

查看答案和解析>>

同步练习册答案