精英家教网 > 高中数学 > 题目详情

已知椭圆C的方程为左、右焦点分别为F1、F2,焦距为4,点M是椭圆C上一点,满足

(Ⅰ)求椭圆C的方程;

(Ⅱ)过点P(0,2)分别作直线PA,PB交椭圆C于A,B两点,设直线PA,PB的斜率分别为k1,k2,求证:直线AB过定点,并求出直线AB的斜率k的取值范围。

 

【答案】

(Ⅰ)(Ⅱ).

【解析】

试题分析:(Ⅰ)在 中,设,,由余弦定理得

,即,得.

又因为

又因为所以

所以所求椭圆的方程为.                    

(Ⅱ)显然直线的斜率存在,设直线方程为

,即

得,,又

那么

则直线过定点.                

因为

,所以.  

考点:直线与圆锥曲线的综合问题;椭圆的标准方程.

点评:本题主要考查了直线与圆锥曲线的综合问题.此类题综合性强,要求学生要有较高地转化数学思想的运用能力,能将已知条件转化到基本知识的运用

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知椭圆C的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,点A、B分别为其左、右顶点,点F1、F2分别为其左、右焦点,以点A为圆心,AF1为半径作圆A;以点B为圆心,OB为半径作圆B;若直线l: y=-
3
3
x
被圆A和圆B截得的弦长之比为
15
6

(1)求椭圆C的离心率;
(2)己知a=7,问是否存在点P,使得过P点有无数条直线被圆A和圆B截得的弦长之比为
3
4
;若存在,请求出所有的P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,椭圆C的左、右焦点分别为F1(-1,0)、F2(1,0),斜率为k(k≠0)的直线l经过点F2,交椭圆于A、B两点,且△ABF1的周长为8.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点E为x轴上一点,
AF2
F2B
(λ∈R),若
F1F2
⊥(
EA
BE
)
,求点E的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)已知椭圆C的方程为
x2
a2
+
y2
b2
=1(a>b>0),F1(-2,0)为左焦点,点M(
2
3
)在椭圆上.
(1)求椭圆C的方程;
(2)过点F1作两条斜率存在且互相垂直的直线l1,l2,设L3与椭圆C相交于点A,B.l2 与椭圆C相交于点D.E,求
AD
EB
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•河北区一模)已知椭圆C的方程为 
x2
a2
+
y2
b2
=1 
(a>b>0),过其左焦点F1(-1,0)斜率为1的直线交椭圆于P、Q两点.
(Ⅰ)若
OP
+
OQ
a
=(-3,1)共线,求椭圆C的方程;
(Ⅱ)已知直线l:x+y-
1
2
=0,在l上求一点M,使以椭圆的焦点为焦点且过M点的双曲线E的实轴最长,求点M的坐标和此双曲线E的方程.

查看答案和解析>>

同步练习册答案