精英家教网 > 高中数学 > 题目详情

【题目】下列说法错误的是(
A.若a,b∈R,且a+b>4,则a,b至少有一个大于2
B.若p是q的充分不必要条件,则¬p是¬q的必要不充分条件
C.若命题p:“ >0”,则¬p:“ ≤0”
D.△ABC中,A是最大角,则sin2A>sin2B+sin2C是△ABC为钝角三角形的充要条件

【答案】C
【解析】解:A.若a,b至少有一个大于2不成立,则都不大于2,则a≤2,b≤2,则a+b≤4,与a+b>4矛盾,故假设不成立,则若a,b∈R,且a+b>4,则a,b至少有一个大于2正确,
B.若p是q的充分不必要条件,则¬q是¬p的充分不必要条件,即¬p是¬q的必要不充分条件,正确,
C.若命题p:“ >0”,则¬p:“ ≤0或x﹣1=0”,故C错误,
D.△ABC中,A是最大角,则sin2A>sin2B+sin2C得a2>b2+c2 , 则cosA= <0,则A是钝角,则△ABC为钝角三角形,
若△ABC为钝角三角形,∵A是最大角,∴A是钝角,则cosA= <0,即a2>b2+c2 , 则sin2A>sin2B+sin2C成立,即sin2A>sin2B+sin2C是△ABC为钝角三角形的充要条件正确,
故选:C
【考点精析】解答此题的关键在于理解命题的真假判断与应用的相关知识,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=1,BC=2,半圆O以BC为直径,平面ABCD垂直于半圆O所在的平面,P为半圆周上任意一点(与B、C不重合).

(1)求证:平面PAC⊥平面PAB;
(2)若P为半圆周中点,求此时二面角P﹣AC﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两个随机变量x,y的取值表为

x

0

1

3

4

y

2.2

4.3

4.8

6.7

若x,y具有线性相关关系,且 = x+2.6,则下列四个结论错误的是(
A.x与y是正相关
B.当x=6时,y的估计值为8.3
C.x每增加一个单位,y增加0.95个单位
D.样本点(3,4.8)的残差为0.56

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点与点的距离比它的直线的距离小2

1)求点的轨迹方程;

2是点轨迹上互相垂直的两条弦,问:直线是否经过轴上一定点,若经过,求出该点坐标;若不经过,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位建立坐标系,已知直线l的极坐标方程为2ρcosθ+ρsinθ=3,曲线C的参数方程为 (α为参数).
(1)求曲线C的普通方程和直线l的直角坐标方程;
(2)P(1,1),设直线l与曲线C相交于A、B两点,求|PA||PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,若上为增函数,则称为“一阶比增函数”.

(1)若是“一阶比增函数”,求实数a的取值范围。

(2)若是“一阶比增函数”,求证:对任意,总有

(3)若是“一阶比增函数”,且有零点,求证:关于x的不等式有解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数

(1),且对,函数的值域为,求的表达式;

(2)在(1)的条件下,函数上单调递减,求实数的取值范围;

(3)为偶函数,证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记函数f(x)=的定义域为集合A,函数g(x)=在(0,+∞)上为增函数时k的取值集合为B,函数h(x)=x2+2x+4的值域为集合C.

(1)求集合A,B,C;

(2)求集合A∪(RB),A∩(B∪C).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上的点到它的两个焦的距离之和为,以椭圆的短轴为直径的圆经过这两个焦点,点 分别是椭圆的左、右顶点.

)求圆和椭圆的方程.

)已知 分别是椭圆和圆上的动点( 位于轴两侧),且直线轴平行,直线 分别与轴交于点 .求证: 为定值.

查看答案和解析>>

同步练习册答案