精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数

(1),且对,函数的值域为,求的表达式;

(2)在(1)的条件下,函数上单调递减,求实数的取值范围;

(3)为偶函数,证明

【答案】(1);(2);(3)见解析

【解析】

(1)由题意首先求得a,b的值,据此即可确定函数f(x)的解析式,即可确定函数的表达式;

(2)由题意结合函数的解析式得到关于m的不等式组,求解不等式组即可确定实数的取值范围;

(3)由题意结合函数的性质可得,且据此结合函数的解析式即可证得题中的不等式.

(1)

.

又对,函数的值域为

解得

所以.

(2)由(1)知

时,单调递减

解得

所以,当时,函数上单调递减.

(3)证明∵是偶函数,∴

因为,不妨令,则

,所以,且

所以的值大于零.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若f(x)是定义在(﹣∞,+∞)上的偶函数,x1 , x2∈[0,+∞)(x1≠x2),有 ,则(
A.f(3)<f(1)<f(﹣2)
B.f(1)<f(﹣1)<f(3)
C.f(﹣2)<f(1)<f(3)
D.f(3)<f(﹣2)<f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省高中男生身高统计调查数据显示:全省100000名男生的身高服从正态分布N(170.5,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5cm和187.5cm之间,将测量结果按如下方式分成6组:第1组[157.5,162.5),第2组[162.5,167.5),…,第6组[182.5,187.5],如图是按上述分组方法得到的频率分布直方图.

(1)试评估该校高三年级男生的平均身高;
(2)求这50名男生身高在177.5cm以上(含177.5cm)的人数;
(3)在这50名男生身高在177.5cm以上(含177.5cm)的人中任意抽取2人,该2人中身高排名(从高到低)在全省前130名的人数记为ξ,求ξ的分布列和数学期望.
参考数据:若ξ~N(μ,σ2),则P(μ﹣σ<ξ≤μ+σ)=0.6826,P(μ﹣2σ<ξ≤μ+2σ)=0.9544,P(μ﹣3σ<ξ≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是(
A.若a,b∈R,且a+b>4,则a,b至少有一个大于2
B.若p是q的充分不必要条件,则¬p是¬q的必要不充分条件
C.若命题p:“ >0”,则¬p:“ ≤0”
D.△ABC中,A是最大角,则sin2A>sin2B+sin2C是△ABC为钝角三角形的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直角梯形,如图(1)所示, ,连接,将沿折起,使得平面平面,得到几何体,如图(2)所示.

(1)求证: 平面

(2)若,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

时,求函数的值域;

在区间上为增函数时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的奇函数f(x)满足f(x+2)=-f(x),当0≤x≤1时,f(x)=x,

(1)试画出f(x),x∈[-3,5]的图象;

(2)求f(37.5);

(3)常数a∈(0,1),y=a与f(x),x∈[-3,5]的图象相交,求所有交点横坐标之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在实数集上的函数满足的导函数则不等式的解集为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是梯形,AD∥BC,侧面ABB1A1为菱形,∠DAB=∠DAA1

(1)求证:A1B⊥AD;
(2)若AD=AB=2BC,∠A1AB=60°,点D在平面ABB1A1上的射影恰为线段A1B的中点,求平面DCC1D1与平面ABB1A1所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案