【题目】选修:不等式选讲
已知函数f(x)=|2x+3|+|2x﹣1|.
(Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若关于x的不等式f(x)≤|3m+1|有解,求实数m的取值范围.
【答案】(1)(2)m≤﹣或m≥1.
【解析】试题分析:(Ⅰ)分三种情况讨论,分别求解不等式组,然后求并集即可得结果;(Ⅱ)原不等式等价于f(x)min≤|3m+1|,求出的最小值,解关于的不等式,即可得结果.
试题解析:解:(Ⅰ)不等式f(x)<8,即|2x+3|+|2x﹣1|<8,
可化为①或②或③,…
解①得﹣<x<﹣,解②得﹣≤x≤,解③得<x<,
综合得原不等式的解集为{x|-}.
(Ⅱ)因为∵f(x)=|2x+3|+|2x﹣1|≥|(2x+3)﹣(2x﹣1)|=4,
当且仅当﹣≤x≤时,等号成立,即f(x)min=4,…
又不等式f(x)≤|3m+1|有解,则|3m+1|≥4,解得:m≤﹣或m≥1.
科目:高中数学 来源: 题型:
【题目】已知坐标平面上点与两个定点, 的距离之比等于5.
(1)求点的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为,过点的直线被所截得的线段的长为 8,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知p:指数函数f(x)=(2a-6)x在R上是单调减函数;q:关于x的方程x2-3ax+2a2+1=0的两根均大于3,若p或q为真,p且q为假,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题,其中正确的序号是__________________(写出所有正确命题的序号)
①函数的图像恒过定点;
②已知集合,则映射中满足的映射共有1个;
③若函数的值域为R,则实数的取值范围是;
④函数的图像关于对称的函数解析式为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为R的函数是奇函数
(1)求的值
(2)判断f(x)在上的单调性。(直接写出答案,不用证明)
(3)若对于任意,不等式恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x-1|+|x+1|(x∈R).
(1)证明:函数f(x)是偶函数;
(2)利用绝对值及分段函数知识,将函数解析式写成分段函数的形式,然后画出函数图象;
(3)写出函数的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】罗源滨海新城建一座桥,两端的桥墩已建好,这两墩相距米,余下工程只需建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为32万元,距离为x米的相邻两墩之间的桥面工程费用为万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为万元.
(1)试写出关于的函数关系式;
(2)当=96米,需新建多少个桥墩才能使余下工程的费用最小?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,底面是直角梯形,,,,侧面底面,且是以为底的等腰三角形.
(Ⅰ)证明:
(Ⅱ)若四棱锥的体积等于.问:是否存在过点的平面分别交,于点,使得平面平面?若存在,求出的面积;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com