精英家教网 > 高中数学 > 题目详情
11.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A,B为两个同高的几何体,p:A,B的体积不相等,q:A,B在等高处的截面积不恒相等,根据祖暅原理可知,q是p的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 根据逆否命题的等价性判断¬p是¬q的关系即可.

解答 解:¬q:A,B在等高处的截面积恒相等,¬p:A,B的体积相等,
则由祖暅原理可知,¬p是¬q的必要不充分条件,
则q是p的必要不充分条件,
故选:B

点评 本题主要考查充分条件和必要条件的条件的判断,根据逆否命题的等价性进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.O是平面上一定点,△ABC中AB=AC,一动点P满足:$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\overrightarrow{AB}$+$\overrightarrow{AC}$),λ∈(0,+∞),则直线AP通过△ABC的①②③④(请在横线上填入正确的编号)
①外心    ②内心    ③重心    ④垂心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.己知(2x-$\frac{1}{\sqrt{x}}$)5
(Ⅰ)求展开式中含$\frac{1}{x}$项的系数
(Ⅱ)设(2x-$\frac{1}{\sqrt{x}}$)5的展开式中前三项的二项式系数之和为M,(1+ax)6的展开式中各项系数之和为N,若4M=N,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)是R上的奇函数,当x≥0时,f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),0≤x<1}\\{|x-3|,x≥1}\end{array}\right.$,则函数y=f(x)-$\frac{1}{2}$的所有零点之和是(  )
A.5+$\sqrt{2}$B.1-$\sqrt{2}$C.$\sqrt{2}$-1D.5-$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若($\frac{x}{2}$-$\frac{2}{x}$)n的展开式中前三项的二项式系数之和等于22,
(1)求该展开式中含$\frac{1}{{x}^{2}}$项的系数
(2)求展开式中系数绝对值最大的项的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在如图的程序框图中,若输入的x值为2,则输出的y值为(  )
A.0B.$\frac{1}{2}$C.-$\frac{3}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在极坐标系中,点M(1,$\frac{π}{2}$),曲线C的方程为ρsin2θ=cosθ.以极点O为原点,以极轴为x轴正半轴建立直角坐标系.
(Ⅰ)求点M的直角坐标及曲线C的直角坐标方程;
(Ⅱ)斜率为-1的直线l过点M,且与曲线C交于A,B两点,求点M到A,B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求点M(1,-1,2)到直线L:$\left\{\begin{array}{l}{x-y-z+1=0}\\{2x-y+z-2=0}\end{array}\right.$ 的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.△ABC的内角A、B、C的对边分别为a、b、c.已知a=$\sqrt{5}$,b=3,cosA=$\frac{2}{3}$,则c=(  )
A.3B.$\sqrt{3}$C.2D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案