精英家教网 > 高中数学 > 题目详情
11.△ABC的内角A、B、C的对边分别为a、b、c.已知a=$\sqrt{5}$,b=3,cosA=$\frac{2}{3}$,则c=(  )
A.3B.$\sqrt{3}$C.2D.$\sqrt{2}$

分析 利用余弦定理直接求解即可.

解答 解:∵△ABC的内角A、B、C的对边分别为a、b、c.
a=$\sqrt{5}$,b=3,cosA=$\frac{2}{3}$,
∴$cosA=\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$,即$\frac{2}{3}=\frac{9+{c}^{2}-5}{6c}$,
解得c=2.
故选:C.

点评 本题考查三角形边长的求法,考查余弦定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A,B为两个同高的几何体,p:A,B的体积不相等,q:A,B在等高处的截面积不恒相等,根据祖暅原理可知,q是p的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(Ⅰ)当a=-2时,求不等式f(x)<g(x)的解集;
(Ⅱ)设a>-1,且当x∈[-$\frac{a}{2}$,$\frac{1}{2}$]时,f(x)≤g(x),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若ab=0,则a=0或b=0的否命题若ab≠0,则实数a≠0且b≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.两个变量y与x的回归模型中,分别选择了4个不同模型,它们对应的R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$的值如下,其中拟合效果最好的模型是(  )
A.模型1对应的R2=0.48B.模型3对应的R2=0.15
C.模型2对应的R2=0.96D.模型4对应的R2=0.30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(Ⅰ)已知${(2x-1)^{10}}={a_0}+{a_1}(x-1)+{a_2}(x-1{)^2}+…+{a_{10}}{(x-1)^{10}}$,其中ai∈R,i=1,2,…10.
(i)求a0+a1+a2+…+a10
(ii)求a7
(Ⅱ)2017年5月,北京召开“一带一路”国际合作高峰论坛.组委会将甲、乙、丙、丁、戊五名志愿者分配到翻译、导游、礼仪、司机四个不同的岗位,每个岗位至少有一人参加,且五人均能胜任这四个岗位.
(i)若每人不准兼职,则不同的分配方案有几种?
(ii)若甲乙被抽调去别的地方,剩下三人要求每人必兼两职,则不同的分配方案有几种?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.给出下列四个命题:
①在△ABC中,若C>$\frac{π}{2}$,则sinA<cosB;
②已知点A(0,3),则函数y=$\sqrt{3}$cosx-sinx的图象上存在一点P,使得|PA|=1;
③函数y=cos2x+2bcosx+c是周期函数,且周期与b有关,与c无关;
④设方程x+sinx=$\frac{π}{2}$的解是x1,方程x+arcsinx=$\frac{π}{2}$的解是x2,则x1+x2=π.
其中真命题的序号是①③.(把你认为是真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知{an}是等比数列,其中|q|<1,且a3+a4=2,a2a5=-8,则S3=(  )
A.12B.16C.18D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}的通项公式为an=|n-13|,那么满足ak+ak+1+…+ak+19=102的正整数k=2或5.

查看答案和解析>>

同步练习册答案