精英家教网 > 高中数学 > 题目详情
1.O是平面上一定点,△ABC中AB=AC,一动点P满足:$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\overrightarrow{AB}$+$\overrightarrow{AC}$),λ∈(0,+∞),则直线AP通过△ABC的①②③④(请在横线上填入正确的编号)
①外心    ②内心    ③重心    ④垂心.

分析 设出BC的中点D,由题意可得$\overrightarrow{OP}-\overrightarrow{OA}=λ(\overrightarrow{AB}+\overrightarrow{AC})$=2$λ\overrightarrow{AD}$,可得A、P、D三点共线,进而可得答案.

解答 解:设BC中点为D,则AD为△ABC中BC边上的中线,
由向量的运算法则可得$\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AD}$,
可得$\overrightarrow{OP}-\overrightarrow{OA}=λ(\overrightarrow{AB}+\overrightarrow{AC})$=2$λ\overrightarrow{AD}$,可得A、P、D三点共线,
又AB=AC,所以点P一定过△ABC的重心、外心、内心、垂心,
答案为:①②③④.

点评 本题主要考查平面向量的基本定理和向量的共线定理.属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若复数z满足z(1+i)=|$\sqrt{3}$-i|+i,则z的虚部是(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知${(3{x^2}-\frac{1}{x})^n}$的展开式中所有二项式系数和为64,则n=6;二项展开式中含x3的系数为-540.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在平面直角坐标系中,已知点P(3,0)在圆C:(x-m)2+(y-2)2=40内,动直线AB过点P,且交圆C于A,B两点,若△ABC面积的最大值为20,则实数m的取值范围是(  )
A.-3<m≤-1或7≤m<9B.-3≤m≤-1或7≤m≤9C.-3<m<-1或7<m<9D.-3<m<-1或7≤m<9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.正整数1260与924的最大公约数为84.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.[选做二]在极坐标系中,已知圆C的方程为ρ=2cos(θ-$\frac{π}{4}$),则圆心C的极坐标可以为(  )
A.(2,$\frac{π}{4}$)B.(2,$\frac{3π}{4}$)C.(1,$\frac{π}{4}$)D.(1,$\frac{3π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知a∈R,i为虚数单位,若(1-2i)(a+i)>0,则a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+2y-2≥0}\\{2x+y-7≤0}\end{array}\right.$,则z=x+y的最大值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A,B为两个同高的几何体,p:A,B的体积不相等,q:A,B在等高处的截面积不恒相等,根据祖暅原理可知,q是p的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案