精英家教网 > 高中数学 > 题目详情
8.若复数z满足z(1+i)=|$\sqrt{3}$-i|+i,则z的虚部是(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

分析 把已知等式变形,再利用复数代数形式的乘除运算化简得答案.

解答 解:由z(1+i)=|$\sqrt{3}$-i|+i,
得$z=\frac{|\sqrt{3}-i|+i}{1+i}=\frac{2+i}{1+i}=\frac{(2+i)(1-i)}{(1+i)(1-i)}$=$\frac{3-i}{2}=\frac{3}{2}-\frac{1}{2}i$,
则z的虚部是:$-\frac{1}{2}$.
故选:B.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知如图是一个空间几何体的三视图.
(1)该空间几何体是如何构成的;
(2)求该几何体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若函数f(x)满足f(x)=f(x+$\frac{3π}{2}$)且f($\frac{π}{4}$+x)=f($\frac{π}{4}$-x)(x∈R),则称函数f(x)为“M函数”.
(1)试判断f(x)=sin$\frac{4}{3}$x是否为“M函数”,并说明理由;
(2)函数f(x)为“M函数”,且当x∈[$\frac{π}{4}$,π]时,f(x)=sinx,求y=f(x)的解析式,并写出在[0,$\frac{3π}{2}$]上的单调递增区间;
(3)在(2)条件下,当x∈[-$\frac{π}{2}$,$\frac{3kπ}{2}$+π](k∈N)时,关于x的方程f(x)=a(a为常数)有解,记该方程所有解的和为S(k),求S(k).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是两个不共线的向量,已知向量$\overrightarrow{AB}$=m$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow{CB}$=-2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,若A、B、D三点共线,则实数m的值为(  )
A.-$\frac{3}{2}$B.-6C.2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某几何体的三视图如图所示,其中俯视图是等腰三角形,那么该几何体的体积是(  )
A.96B.128C.140D.152

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.一根直木棍长为6m,现将其锯为2段.
(1)若两段木棍的长度均为正整数,求恰有一段长度为2m的概率;
(2)求锯成的两段木棍的长度均大于2m的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=2+log3x,x∈[1,3],求函数y=[f(x)]2+f(x2)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)是定义在R上的偶函数,当x≤0时,f(x)=log2(-x+1).
(1)求函数f(x)在定义域R上的解析式;
(2)解关于x的不等式f(2x-1)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.O是平面上一定点,△ABC中AB=AC,一动点P满足:$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\overrightarrow{AB}$+$\overrightarrow{AC}$),λ∈(0,+∞),则直线AP通过△ABC的①②③④(请在横线上填入正确的编号)
①外心    ②内心    ③重心    ④垂心.

查看答案和解析>>

同步练习册答案