精英家教网 > 高中数学 > 题目详情
6.[选做二]在极坐标系中,已知圆C的方程为ρ=2cos(θ-$\frac{π}{4}$),则圆心C的极坐标可以为(  )
A.(2,$\frac{π}{4}$)B.(2,$\frac{3π}{4}$)C.(1,$\frac{π}{4}$)D.(1,$\frac{3π}{4}$)

分析 圆C的极坐标方程转化${ρ}^{2}=\sqrt{2}ρcosθ+\sqrt{2}ρsinθ$,从而求出圆C的直角坐标方程,进而求出圆C的直角坐标,由此能求出圆心C的极坐标.

解答 解:∵圆C的方程为ρ=2cos(θ-$\frac{π}{4}$),
∴$ρ=2cosθcos\frac{π}{4}+2sinθsin\frac{π}{4}$=$\sqrt{2}cosθ+\sqrt{2}sinθ$,
∴${ρ}^{2}=\sqrt{2}ρcosθ+\sqrt{2}ρsinθ$,
∴圆C的直角坐标方程为:${x}^{2}+{y}^{2}-\sqrt{2}x-\sqrt{2}y$=0,
∴圆C的直角坐标为C($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$),
∴圆心C的极坐标为(1,$\frac{π}{4}$).
故选:C.

点评 本题考查圆心的极坐标的求法,考查直角坐标方程、极坐标方程的互化等知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.一根直木棍长为6m,现将其锯为2段.
(1)若两段木棍的长度均为正整数,求恰有一段长度为2m的概率;
(2)求锯成的两段木棍的长度均大于2m的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知抛物线y2=2px(p>0)的准线经过椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左焦点F1,且椭圆短轴的一个端点与两焦点构成一个直角三角形,A(-2,0)为椭圆的左顶点.
(1)求抛物线和椭圆的标准方程;
(2)设P是椭圆上位于x轴上方的点,直线PA与y轴交于点M,直线MF2(F2为椭圆的右焦点)交抛物线于C,D两点,过F2作MF2的垂线,交y轴于点N,直线AN交椭圆于另一点Q,直线NF2交抛物线于G,H两点.
(ⅰ)求证:$\frac{1}{{|{CD}|}}+\frac{1}{{|{GH}|}}$为定值;
(ⅱ)求△APQ的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.圆O1和圆O2的极坐标方程分别为ρ=4cos θ,ρ=-sin θ.
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过圆O1,圆O2两个交点的直线的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.O是平面上一定点,△ABC中AB=AC,一动点P满足:$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\overrightarrow{AB}$+$\overrightarrow{AC}$),λ∈(0,+∞),则直线AP通过△ABC的①②③④(请在横线上填入正确的编号)
①外心    ②内心    ③重心    ④垂心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若“?x∈[1,2],使2x2-λx+1<0成立”是假命题,则实数λ的取值范围是(  )
A.(-∞,2$\sqrt{2}$]B.[2$\sqrt{2}$,$\frac{9}{2}$]C.(-∞,3]D.[$\frac{9}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若角α的终边经过点(1,-5),则tanα等于(  )
A.-5B.5C.-$\frac{1}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-a|x|-{a}^{2}-2,x≥-1}\\{ax-{a}^{2}-1,x<-1}\end{array}\right.$,(a∈R).
(1)当a=2时,解不等式f(x)≤2;
(2)证明:方程f(x)=0最少有1个解,最多有2个解,并求该方程有2个解时实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在如图的程序框图中,若输入的x值为2,则输出的y值为(  )
A.0B.$\frac{1}{2}$C.-$\frac{3}{2}$D.-1

查看答案和解析>>

同步练习册答案