| A. | (2,$\frac{π}{4}$) | B. | (2,$\frac{3π}{4}$) | C. | (1,$\frac{π}{4}$) | D. | (1,$\frac{3π}{4}$) |
分析 圆C的极坐标方程转化${ρ}^{2}=\sqrt{2}ρcosθ+\sqrt{2}ρsinθ$,从而求出圆C的直角坐标方程,进而求出圆C的直角坐标,由此能求出圆心C的极坐标.
解答 解:∵圆C的方程为ρ=2cos(θ-$\frac{π}{4}$),
∴$ρ=2cosθcos\frac{π}{4}+2sinθsin\frac{π}{4}$=$\sqrt{2}cosθ+\sqrt{2}sinθ$,
∴${ρ}^{2}=\sqrt{2}ρcosθ+\sqrt{2}ρsinθ$,
∴圆C的直角坐标方程为:${x}^{2}+{y}^{2}-\sqrt{2}x-\sqrt{2}y$=0,
∴圆C的直角坐标为C($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$),
∴圆心C的极坐标为(1,$\frac{π}{4}$).
故选:C.
点评 本题考查圆心的极坐标的求法,考查直角坐标方程、极坐标方程的互化等知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2$\sqrt{2}$] | B. | [2$\sqrt{2}$,$\frac{9}{2}$] | C. | (-∞,3] | D. | [$\frac{9}{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com