分析 利用导数运算法则即可得出f′(x),令f′(x)=0,f′(x)>0,f′(x)<0,即可解得x的范围,列出表格,即可得出单调区间.
解答 解:∵f(x)=x3-6x+5,∴f′(x)=3x2-6.
令f′(x)=0,解得x=±$\sqrt{2}$,f′(x),f(x)随着x的变化情况如下表:
| x | (-∞,-$\sqrt{2}$) | -$\sqrt{2}$ | (-$\sqrt{2}$,$\sqrt{2}$) | $\sqrt{2}$ | ($\sqrt{2}$,+∞) |
| f′(x) | + | 0 | - | 0 | + |
| f(x) | 单调递增 | 极大值 | 单调递减 | 极小值 | 单调递增 |
点评 本题考查了利用导数研究函数的单调性,熟练掌握导数的运算法则是解题的关键,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{1}{3}$,$\frac{1}{3}$] | B. | (-∞,-$\frac{1}{3}$]∪[$\frac{1}{3}$,+∞)∪{0} | C. | [-3,3] | D. | (-∞,-3]∪[3,+∞)∪{0} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{2}$ | B. | π或$\sqrt{3π}$ | C. | $\sqrt{3π}$ | D. | π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2π,1 | B. | π,1 | C. | π,$\frac{3}{2}$ | D. | 2π,$\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com