精英家教网 > 高中数学 > 题目详情
在△ABC中,B(-2,0),C(2,0),A(x,y),若△ABC满足条件分别为①周长为10;②∠A=90°;③kABkAC=1.则A的轨迹方程分别是a:x2+y2=4(y≠0);b:
x2
9
+
y2
5
=1(y≠0)
;c:x2-y2=4(y≠0),则正确的配对关系是(  )
分析:①由△ABC的周长为10,知AB+AC=6>BC,故动点A的轨迹为椭圆,与b对应;②∠A=90°,由向量知识导出x2+y2-4=0,与c对应;③kABkAC=1,由直线斜率导出x2+y2=4,与a对应.
解答:解:△ABC中,∵B(-2,0),C(2,0),A(x,y),
∴BC=4,
AB
=(-2-x,-y),
AC
=(2-x,-y),kAB=
y
x+2
,kAC=
y
x-2

①△ABC的周长为10,即AB+AC+BC=10,而BC=4,所以AB+AC=6>BC,
故动点A的轨迹为椭圆,与b对应;
②∠A=90°,故
AB
AC
=(-2-x,-y)(2-x,-y)=x2+y2-4=0,与a对应;
③kABkAC=1,故
y
x+2
y
x-2
=1
.即x2-y2=4,与c对应.
故选B.
点评:本题考查轨迹方程的求法,具体涉及到椭圆、圆、双曲线、向量、直线等基本知识点,解题时要注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠B=90°,AC=
15
2
,D,E两点分别在AB,AC上.使
AD
DB
=
AE
EC
=2,DE=3.将△ABC沿DE折成直二面角,则二面角A-EC-B的余弦值为(  )
A、
3
22
22
B、
5
22
22
C、
3
34
34
D、
5
34
34

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,B=45°,D是BC边上的一点,AD=5,AC=7,DC=3,则AB的长为
 

精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠B=120°,AB=2
3
,AC=6,则∠C为
30°
30°

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列五个命题:
①“若x+y=0,则x,y互为相反数”的逆命题.
②在平面内,F1、F2是定点,丨F1F2丨=6,动点M满足丨MF1丨-丨MF2丨=4,则点M的轨迹是双曲线.
③“在△ABC中,“∠B=60°”是“∠A,∠B,∠C三个角成等差数列”的充要条件.
④“若-3<m<5,则方程
x2
5-m
+
y2
m+3
=1是椭圆”.
⑤已知向量
a
b
c
是空间的一个基底,则向量
a
+
b
a
-
b
c
也是空间的一个基底.
⑥椭圆
x2
25
+
y2
9
=1上一点P到一个焦点的距离为5,则P到另一个焦点的距离为5.
其中真命题的序号是
①③⑤⑥
①③⑤⑥

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠B=
π
3
,三边长a,b,c成等差数列,且a,
6
,c成等比数列,则b的值是(  )
A、
2
B、
3
C、
5
D、
6

查看答案和解析>>

同步练习册答案