精英家教网 > 高中数学 > 题目详情
设F1(-4,0)、F2(4,0)为定点,动点M满足|MF1|+|MF2|=8,则动点M的轨迹是(  )
A.椭圆B.直线C.圆D.线段
若点M与F1,F2可以构成一个三角形,则|MF1|+|MF2|>|F1F2|,
∵|F1F2|=8,动点M满足|MF1|+|MF2|=8,
∴点M在线段F1F2上.
故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两焦点为,并且过点,求椭圆的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分) 直角三角形的直角顶点为动点,为两个定点,作,动点满足,当点运动时,设点的轨迹为曲线,曲线轴正半轴的交点为.(Ⅰ) 求曲线的方程;(Ⅱ) 是否存在方向向量为m的直线,与曲线交于两点,使,且的夹角为?若存在,求出所有满足条件的直线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正四面体P-ABC中,点M在面PBC内,且点M到点P的距离等于点M到底面ABC的距离则动点M在面PBC的轨迹是(  )
A.抛物线的一部分B.椭圆的一部分
C.双曲线的一部分D.圆的一部分

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

△ABC的顶点A(-5,0)、B(5,0),△ABC的周长为22,则顶点C的轨迹方程是(  )
A.
x2
36
+
y2
11
=1
B.
x2
25
+
y2
11
=1
C.
x2
36
+
y2
11
=1(y≠0)
D.
x2
9
+
y2
16
=1(y≠0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直角梯形ABCD中∠DAB=90°,ADBC,AB=2,AD=
3
2
,BC=
1
2
.椭圆G以A、B为焦点且经过点D.
(Ⅰ)建立适当坐标系,求椭圆G的方程;
(Ⅱ)若点E满足
EC
=
1
2
AB
,问是否存在不平行AB的直线l与椭圆G交于M、N两点且|ME|=|NE|,若存在,求出直线l与AB夹角正切值的范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知焦点在x轴上的椭圆,长轴长为4,右焦点到右顶点的距离为1,则椭圆的标准方程为(  )
A.
x2
4
+y2=1
B.
x2
4
+
y2
3
=1
C.
x2
4
+
y2
2
=1
D.
x2
3
+
y2
4
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆ax2+by2=1与直线x+y-1=0相交于A,B两点,C是AB的中点,若|AB|=2
2
,OC
的斜率为
2
2
,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知方程ax2+by2=ab和ax+by+c=0,其中,ab≠0,a≠b,c>0,它们所表示的曲线可能是下列图象中的(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案