精英家教网 > 高中数学 > 题目详情

若向量,其中,记函数,若函数的图象与直线为常数)相切,并且切点的横坐标依次成公差为的等差数列。
(1)求的表达式及的值;
(2)将函数的图象向左平移,得到的图象,当时,的交点横坐标成等比数列,求钝角的值。

(1);(2)

解析试题分析:(1)因为向量
所以 
因为函数与相切,所以.
因为切点的横坐标依次成公差为的等差数列,所以
所以                                                           ……5分
(2)将函数的图象向左平移
得到的图象,
所以
因为,所以钝角的值为.                                        ……10分
考点:本小题主要考查三角函数的化简和求值,三角函数的图象和性质.
点评:三角函数中公式比较多,特别是二倍角公式应用十分广泛,要结合图象仔细计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数处取最小值.
(1)求的值;
(2)在ABC中,分别是角A,B,C的对边,已知,求值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,单位圆(半径为的圆)的圆心为坐标原点,单位圆与轴的正半轴交于点,与钝角的终边交于点,设.

(1)用表示
(2)如果,求点的坐标;
(3)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(8分)已知

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知a∈(0,π)且cos(a-)=。求cosa

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(I)当a=1时,求函数的最小正周期及图象的对称轴方程式;
(II)当a=2时,在的条件下,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知向量=(),=(,-),且
(Ⅰ)用cosx表示·及||;
(Ⅱ)求函数f(x)=·+2||的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数的最小正周期为,最小值为,图象过点,(1)求的解析式;(2)求满足的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知为锐角,且,函数,数列{}的首项.
(Ⅰ)求函数的表达式;
(Ⅱ)求数列的前项和

查看答案和解析>>

同步练习册答案