精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,F1、F2分别为椭圆C的左、右焦点,若椭圆C的焦距为2.
(1)求椭圆C的方程;
(2)设M为椭圆上任意一点,以M为圆心,MF1为半径作圆M,当圆M与直线l:x=
a2
c
有公共点时,求△MF1F2面积的最大值.
分析:(1)根据焦距为2求出c的值,再由离心率为
1
2
可求出a的值,进而得到b的值写出椭圆方程.
(2)先设M的坐标为(x0,y0)根据题意满足
x
2
0
4
+
y
2
0
3
=1
,再表示出直线l的方程,因为圆M与l有公共点可得到M到l的距离4-x0小于或等于圆的半径R,整理可得到关系y02+10x0-15≥0,再由则
x
2
0
4
+
y
2
0
3
=1
消去y0,求出x0的取值范围,再表示出△MF1F2面积即可求出最大值.
解答:解:(1)因为2c=2,且
c
a
=
1
2
,所以c=1,a=2.
所以b2=3.
所以椭圆C的方程为
x2
4
+
y2
3
=1

(2)设点M的坐标为(x0,y0),
x
2
0
4
+
y
2
0
3
=1

因为F1(-1,0),
a2
c
=4

所以直线l的方程为x=4.
由于圆M与l有公共点,
所以M到l的距离4-x0小于或等于圆的半径R.
因为R2=MF12=(x0+1)2+y02
所以(4-x02≤(x0+1)2+y02
即y02+10x0-15≥0.
又因为
y
2
0
=3(1-
x
2
0
4
)

所以3-
3
x
2
0
4
+10x0-15≥0

解得
4
3
x0≤12
.又
x
2
0
4
+
y
2
0
3
=1
,∴
4
3
x0<2

x0=
4
3
时,|y0|=
15
3

所以(S△MF1F2)max=
1
2
×2×
15
3
=
15
3
点评:本题主要考查椭圆的标准方程和直线与椭圆的综合题.直线和圆锥曲线的综合题是高考的重点,每年必考,经常以压轴题的形式出现,要想答对此题必须熟练掌握其基础知识,对各种题型多加练习.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案