精英家教网 > 高中数学 > 题目详情
(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.
分析:(Ⅰ)利用椭圆的长轴长是4,离心率为
1
2
,求出几何量,即可求椭圆方程;
(Ⅱ)设出直线方程,代入椭圆方程,利用韦达定理,及以MN为直径的圆过椭圆C的右顶点A,求出k,即可求得直线l的方程.
解答:解:(Ⅰ)由已知2a=4,
c
a
=
1
2
.解得a=2,c=1,所以b2=a2-c2=3,
故椭圆的方程为
x2
4
+
y2
3
=1
.…(5分)
(Ⅱ)由M,N不与椭圆的顶点重合,设直线l的方程为y=kx-2,代入椭圆方程可得(4k2+3)x2-16kx+4=0,
由△=(-16k)2-16(4k2+3)=12k2-3>0,得k<-
1
2
k>
1
2
              …(8分)
设M(x1,y1),N(x2,y2),则x1+x2=
16k
4k2+3
,x1x2=
4
4k2+3
,y1y2=
-28k2
4k2+3
+4

由(Ⅰ)得椭圆C的右顶点A(2,0),
因为以MN为直径的圆过椭圆C的右顶点A,
所以kAMkAN=-1,
y1
x1-2
y2
x2-2
=-1,
∴y1y2+x1x2-2(x1+x2)+4=0,
-28k2
4k2+3
+4+
4
4k2+3
-
32k
4k2+3
+4
=0,
∴k2-8k+7=0,解得k=7或k=1
当k=1时,l:y=x-2,直线过椭圆C的右顶点A(2,0),舍去;
当k=7时,l:y=7x-2.
综上可知,直线l的方程是y=7x-2      …(14分)
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•房山区二模)在△ABC中,A=
π
6
a=1,b=
2
,则B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知f(x)是定义在R上的偶函数,当x>0时,
xf′(x)-f(x)
x2
>0
,且f(-2)=0,则不等式
f(x)
x
>0
的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)“θ=
π
3
”是“cosθ=
1
2
”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)参数方程
x=2cosθ
y=3sinθ
 (θ
为参数)和极坐标方程ρ=4sinθ所表示的图形分别是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)集合A={x|0≤x≤1},B={x|x
1
2
},则A∪B等于(  )

查看答案和解析>>

同步练习册答案