精英家教网 > 高中数学 > 题目详情
7.师大附中三年级一班40人随机平均分成两组,两组学生一次考试的成绩情况如下表:
 统计量
 组别
 平均成绩 标准差
 第一组 90 6
 第二组 80 4
求全班学生的平均成绩和标准差.

分析 因为是平均分组,所以全班学生的平均值是两组学生平均值的平均,标准差计算时要分开算出每组学生对全班平均值的差的平方和,再求标准差.

解答 解:∵某班40人随机平均分成两组,
两个组的平均成绩分别是80,90.
∴全班的平均成绩是:$\frac{80×20+90×20}{40}$=85,
由已知$\frac{1}{20}$$\sum_{1}^{20}$(xi-90)2=36,即$\sum_{i=1}^{20}$(xi-90)2=720,
即$\sum_{i=1}^{20}$(xi-85-5)2=720,即$\sum_{i=1}^{20}$(xi-85)2-10$\sum_{i=1}^{20}$(xi-85)+500=720
$\frac{1}{20}$$\sum_{i=1}^{20}$(xj-80)2=16,即$\sum_{j=1}^{20}$(xj-85+5)2=320,即$\sum_{j=1}^{20}$(xj-85)2+10$\sum_{j=1}^{20}$(xj-85)+500=320,
故$\sum_{i=1}^{20}$(xi-85)2+$\sum_{j=1}^{20}$(xj-85)2-10$\sum_{i=1}^{20}$(xi-85)+10$\sum_{j=1}^{20}$(xj-85)+1000=1040,
故$\sum_{i=1}^{20}$(xi-85)2+$\sum_{j=1}^{20}$(xj-85)2-10$\sum_{i=1}^{20}$xi+10$\sum_{j=1}^{20}$xj+1000=2040
故$\sum_{i=1}^{20}$(xi-85)2+$\sum_{j=1}^{20}$(xj-85)2=2040
故$\sum_{i=1}^{40}$(xi-85)2=2040
∴S=$\sqrt{\frac{1}{40}×2040}$=$\sqrt{51}$.
∴全班学生的平均成绩为85,标准差为$\sqrt{51}$.

点评 本题考点是方差与标准差,本题属于变换求标准差的题型,关键是厘清相关数据之间的关系,达到用已知表示未知的目的,请认真体会本题的转化方法,其本质是作了一系列的恒等变形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.过点P(1,0)且与曲线C:y=$\sqrt{{x}^{2}+1}$恰有一个公共点的直线有(  )
A.4条B.3条C.2条D.无数条

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.M={x|-2<x<5},N={x|x<a},若A∩B=∅,则(  )
A.a≥-2B.a≤-2C.a≥5D.a≤5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=x+$\frac{a}{x}$(x>0,a≥0).
(1)判断f(x)的单调性,并给予证明;
(2)当x∈[1,2]时,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设U=R,A={x|-2≤x≤4},求CUA.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.数列{bn}的通项公式为bn=$\frac{2n+1}{{2}^{n}}$,则数列{bn}的前n项和S${\;}_{{n}_{\;}}$等于(  )
A.$\frac{5}{2}$-$\frac{2n+5}{{2}^{n+1}}$B.5-$\frac{2n+5}{{2}^{n}}$C.$\frac{2n+1}{{2}^{n}}+1$D.$\frac{2n+5}{{2}^{n}}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}是等差数列,bn=3an+4,判断数列{bn}是否是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.根据如图所示的函数y=f(x)的图象,写出函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,若B=120°,则a2+ac+c2-b2的值(  )
A.大于0B.小于0C.等于0D.不确定

查看答案和解析>>

同步练习册答案