精英家教网 > 高中数学 > 题目详情
在如图所示的几何体中,正方形ABCD和矩形ABEF所在的平面互相垂直,M为AF的中点,BN⊥CE.

(1)求证:CF∥平面MBD;
(2)求证:CF⊥平面BDN.
(1)见解析    (2)见解析
证明:(1)连接AC交BD于点O,连接OM.
因为四边形ABCD是正方形,所以O为AC的中点.
因为M为AF的中点,所以CF∥OM,
又OM?平面MBD,CF?平面MBD,所以CF∥平面MBD.

(2)因为正方形ABCD和矩形ABEF所在的平面互相垂直,
所以AF⊥平面ABCD,又BD?平面ABCD,所以AF⊥BD.
又四边形ABCD是正方形,所以AC⊥BD.
因为AC∩AF=A,所以BD⊥平面ACF,
因为CF?平面ACF,所以CF⊥BD.
因为AB⊥BC,AB⊥BE,BC∩BE=B,所以AB⊥平面BCE.
因为BN?平面BCE,所以AB⊥BN,易知EF∥AB,
所以EF⊥BN.
又EC⊥BN,EF∩EC=E,所以BN⊥平面CEF,
因为CF?平面CEF,所以BN⊥CF.
因为BD∩BN=B,所以CF⊥平面BDN.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在正方体中,的中点.

(1)求证:平面
(2)求证:平面平面
(3)求直线BE与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

A是△BCD平面外的一点,E,F分别是BC,AD的中点.
(1)求证:直线EF与BD是异面直线;
(2)若AC⊥BD,AC=BD,求EF与BD所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直四棱柱底面直角梯形,是棱上一点,.
(1)求直四棱柱的侧面积和体积;
(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知梯形ABCD中,ADBC,∠ABC=∠BAD=
π
2
,AB=BC=2AD=4,E、F分别是AB、CD上的点,EFBC,AE=x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).
(1)当x=2时,求证:BD⊥EG;
(2)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3)当f(x)取得最大值时,求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体ABCD-A1B1C1D1中,点P是直线BC1的动点,则下列四个命题:
①三棱锥A-D1PC的体积不变;
②直线AP与平面ACD1所成角的大小不变;
③二面角P-AD1-C的大小不变:
其中正确的命题有____      .(把所有正确命题的编号填在横线上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为三条不同的直线,为两个不同的平面,下列命题中正确的是(    )
A.,且,则.
B.若平面内有不共线的三点到平面的距离相等,则.
C.若,则.
D.若,则.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是(  )
A.PB⊥AD
B.平面PAB⊥平面PBC
C.直线BC∥平面PAE
D.直线PD与平面ABC所成的角为45°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知α,β是两个不同的平面,给出下列四个条件:
①存在一条直线a,a⊥α,a⊥β;
②存在一个平面γ,γ⊥α,γ⊥β;
③存在两条平行直线a,b,a?α,b?β,a∥β,b∥α;
④存在两条异面直线a,b,a?α,b?β,a∥β,b∥α.
可以推出α∥β的是(  )
A.①③B.②④C.①④D.②③

查看答案和解析>>

同步练习册答案