分析 (1)在平面内γ任取一点P,过点P作PA⊥l1,PB⊥l2,A,B为垂足,利用面面垂直的性质、线面垂直的性质与判定即可证明;
(2)利用线面平行的性质定理及平行公理即可得出结论.
解答 证明:(1)如图,在平面内γ任取一点P,过点P作PA⊥l1,PB⊥l2,A,B为垂足,…(1分)
∵α∩γ=l1,α⊥γ,PA?γ,∴PA⊥α
又∵l?α,∴PA⊥l…(3分)
同理:PB⊥l…(5分)
∴l⊥γ…(6分)![]()
(2)过直线a作平面γ1,γ2使得α∩γ1=l1,β∩γ2=l2…(1分)
∵a∥α,α∩γ1=l1,a?γ1,∴a∥l1…(3分)
同理a∥l2,∴l1∥l2,
又l1?α,l2?β,∴l1∥β,∴l1∥l…(5分)
∴a∥l…(6分)![]()
点评 本题考查线面平行的性质定理及平行公理、考查平面与平面垂直的性质、线面垂直的性质与判定,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 有最大值$\sqrt{5}$+1和最小值4 | B. | 有最大值5和最小值4 | ||
| C. | 有最大值5和最小值$\sqrt{5}$-1 | D. | 无最大值,最小值4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(0)<f(5) | B. | f(-1)<f(3) | C. | f(3)>f(2) | D. | f(2)>f(0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4π}{3}$ | B. | 4π | C. | 12π | D. | $4\sqrt{3}π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{9}$ | B. | $\frac{5}{9}$ | C. | $\frac{2}{3}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,+∞) | B. | (1,+∞) | C. | (0,1) | D. | (1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com