精英家教网 > 高中数学 > 题目详情
有以下四种变换方式:
①向左平移
π
4
个单位长度,再把所得各点的横坐标缩短到原来的
1
2
倍(纵坐标不变);
②向左平移
π
8
个单位长度,再把所得各点的横坐标缩短到原来的
1
2
倍(纵坐标不变);
③把各点的横坐标缩短到原来的
1
2
倍(纵坐标不变),再向左平移
π
4
个单位长度;
④把各点的横坐标缩短到原来的
1
2
倍(纵坐标不变),再向左平移
π
8
个单位长度;
其中能将函数y=sinx的图象变为函数y=sin(2x+
π
4
)的图象的是(  )
A、①和④B、①和③
C、②和④D、②和③
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:根据由函数y=sinx的图象变为函数y=sin(2x+
π
4
)的图象有两种路径逐一核对四个命题得答案.
解答: 解:由函数y=sinx的图象变为函数y=sin(2x+
π
4
)的图象有两种路径:
(1)先平移后改变周期:把y=sinx的图象向左平移
π
4
个单位长度,再把所得各点的横坐标缩短到原来的
1
2
倍(纵坐标不变);
(2)先改变周期后平移:把y=sinx的图象上所有点的横坐标缩短到原来的
1
2
倍(纵坐标不变),再把所得图象向左平移
π
8
个单位长度.
∴正确的命题是①④.
故选:A.
点评:本题考查了y=Asin(ωx+φ)型函数的图象变化,关键是熟记两种变化路径,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M={0,2},数列{an}满足an∈M(n=1,2,3,…),设W=
a1
3
+
a2
32
+…+
a100
3100
,则W一定不属于区间(  )
A、[0,1)
B、(0,1]
C、[
1
3
2
3
D、(
1
3
2
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

2011年六月康菲公司由于机器故障,引起严重的石油泄漏,造成了海洋的巨大污染,某沿海渔场也受到污染.为降低污染,渔场迅速切断与海水联系,并决定在渔场中投放一种可与石油发生化学反应的药剂.已知每投放a(1≤a≤4,且a∈R)个单位的药剂,它在水中释放的浓度y(克/升)随着时间x(天)变化的函数关系式近似于y=af(x),其中f(x)=
16
8-x
-1(0≤x≤4)
5-
1
2
x(4<x≤10)
,若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据实验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.称为有效净化;当药剂在水中释放的浓度不低于6(毫克/升)且不高于18(毫克/升)时称为最佳净化.
(Ⅰ)若一次投放4个单位的药剂,则有效治污时间可达几天?
(Ⅱ)若第一次投放2个单位的药剂,6天后再投放a个单位的药剂,要使接下来的4天中能够持续有效治污,试问a的最小值(精确到0.1,参考数据:
2
取1.4).

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-sin2x+sinx+1,x∈[0,
5
4
π]的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若将函数y=sin(ωx+
π
4
)(ω>0)的图象向右平移
π
6
个单位长度后,得到一个奇函数的图象,则ω的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P,Q是以原点为圆心的单位圆上的两个动点,若它们同时从点A(1,0)出发,沿逆时针方向作匀角速度运动,其角速度分别为
π
3
π
6
(单位:弧度/秒),M为线段PQ的中点,记经过x秒后(其中0≤x≤6),f(x)=|OM|.
(Ⅰ)求y=f(x)的函数解析式;
(Ⅱ)将f(x)图象上的各点均向右平移2个单位长度,得到g=g(x)的图象,求函数g=g(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

sin347°cos148°+sin32°cos13°=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-4mx+4=0},B={x|x<0},若集合A∩B≠∅,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>0,b>0,且a+b=4,则ab的最大值为(  )
A、8B、4C、2D、1

查看答案和解析>>

同步练习册答案