£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣®£©
A£®É躯Êýf£¨x£©=|2x+1|-|x-4|£®Ôò²»µÈʽf£¨x£©£¾2µÄ½â¼¯Îª
{x|x£¼-7»òx£¾
5
3
}
{x|x£¼-7»òx£¾
5
3
}
£»
B£®£¨×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩ÇúÏßC£º
x=-2+2cos¦Á
y=2sin¦Á
£¨¦ÁΪ²ÎÊý£©£¬ÈôÒÔµãO£¨0£¬0£©Îª¼«µã£¬xÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ôò¸ÃÇúÏߵļ«×ø±ê·½³ÌÊÇ
¦Ñ=-4cos¦È
¦Ñ=-4cos¦È
£®

C£®£¨¼¸ºÎÖ¤Ã÷Ñ¡½²Ñ¡×öÌ⣩ Èçͼ£¬¡ÑOµÄÖ±¾¶ABµÄÑÓ³¤ÏßÓëÏÒCDµÄÑÓ³¤ÏßÏཻÓÚµãP£¬EΪ¡ÑOÉÏÒ»µã£¬»¡AE=»¡AC£¬DE½»ABÓÚF£¬ÇÒAB=2BP=4£¬ÔòPF=
3
3
£®
·ÖÎö£ºA£¬Í¨¹ý¶Ôx·ÖÀàÌÖÂÛÈ¥µô¾ø¶ÔÖµ·ûºÅ¼´¿ÉÇóµÃ·Ö¶Îº¯Êýf£¨x£©µÄ±í´ïʽ£¬´Ó¶ø¿É|ÇóµÃ²»µÈʽf£¨x£©£¾2µÄ½â¼¯£»
B£¬¸ù¾ÝÌâÒâ¿ÉÒÔµãO£¨0£¬0£©Îª¼«µã£¬xÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ×÷³öͼÐΣ¬´Ó¶øµÃµ½¸ÃÇúÏߵļ«×ø±ê·½³Ì£»
C£ºÓÉÓÚµãFÔÚÖ±¾¶ABÉÏ£¬¿É¹¹ÔìÏàËÆÐΣ¬ÀûÓøîÏ߶¨Àíת»¯Çó½â£®
½â´ð£º½â£º¶ÔÓÚA£¬¡ßf£¨x£©=|2x+1|-|x-4|=
-x-5£¬(x£¼-
1
2
)
3x-3£¬(-
1
2
¡Üx¡Ü4)
x+5£¬(x£¾4)
£¬
¡àµ±x£¼-
1
2
ʱ£¬f£¨x£©£¾2?-x-5£¾2£¬
¡àx£¼-7£»
µ±-
1
2
¡Üx¡Ü4ʱ£¬f£¨x£©£¾2?3x-3£¾2£¬
¡à
5
3
£¼x¡Ü4£»
µ±x£¾4ʱ£¬f£¨x£©£¾2?x+5£¾2£¬
¡àx£¾4£»
×ÛÉÏËùÊö£¬²»µÈʽf£¨x£©£¾2µÄ½â¼¯Îª{x|x£¼-7»òx£¾
5
3
}£»
¶ÔÓÚB£¬ÓɲÎÊý·½³Ì
x=-2+2cos¦Á
y=2sin¦Á
µÃÆäÆÕͨ·½³ÌΪ£º£¨x+2£©2+y2=4£¬
¡àÒÔµãO£¨0£¬0£©Îª¼«µã£¬xÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬

Ôò¸ÃÇúÏߵļ«×ø±ê·½³ÌÊǦÑ=4cos£¨¦Ð-¦È£©=-4cos¦È£»
¶ÔÓÚC£¬Á¬½ÓOC£¬

¡ß¡ÏAOCµÄ¶ÈÊý=»¡ACµÄ¶ÈÊý£¬¡ÏEDCµÄ¶ÈÊý=
1
2
»¡ECµÄ¶ÈÊý=»¡ACµÄ¶ÈÊý
¡à¡ÏAOC=¡ÏEDC£¬
¡à¡ÏPOC=¡ÏPDF£¬
¡à¡÷POC¡×¡÷PDF
¡à
PD
PO
=
PF
PC
£¬
¼´PF=
PC¡ÁPD
PO
=
PB¡ÁPA
PO
=2¡Á
6
4
=3£®
¹Ê´ð°¸Îª£ºA£¬{x|x£¼-7»òx£¾
5
3
}£»B£¬¦Ñ=-4cos¦È£»C£¬3£®
µãÆÀ£º±¾ÌâA¿¼²é¾ø¶ÔÖµ²»µÈʽµÄ½â·¨£¬Í¨¹ý¶Ôx·ÖÀàÌÖÂÛÈ¥µô¾ø¶ÔÖµ·ûºÅÊǹؼü£»B¿¼²é¼òµ¥ÇúÏߵļ«×ø±ê·½³Ì£¬½«²ÎÊý·½³Ìת»¯Îª¼«×ø±ê·½³ÌÊǹؼü£¬C¿¼²é¼¸ºÎÖ¤Ã÷£¬¹¹Ôì½â¾öÎÊÌâµÄÏàËÆÈý½ÇÐÎÊǹؼü£¬ÀûÓÃÇиîÏ߶¨Àíת»¯ÊÇÄѵ㣬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍø£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀ·Ö£©
A£®£¨²»µÈʽѡ×öÌ⣩²»µÈʽ|x+1|¡Ý|x+2|µÄ½â¼¯Îª
 
£®
B£®£¨¼¸ºÎÖ¤Ã÷Ñ¡×öÌ⣩ÈçͼËùʾ£¬¹ý¡ÑOÍâÒ»µãP×÷Ò»ÌõÖ±ÏßÓë¡ÑO½»ÓÚA£¬BÁ½µã£¬
ÒÑÖªPA=2£¬µãPµ½¡ÑOµÄÇÐÏß³¤PT=4£¬ÔòÏÒABµÄ³¤Îª
 
£®
C£®£¨×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩ÈôÖ±Ïß3x+4y+m=0ÓëÔ²
x=1+cos¦È
y=-2+sin¦È
£¨¦ÈΪ²ÎÊý£©Ã»Óй«¹²µã£¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨ÈýÑ¡Ò»£¬¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀ·Ö£©
£¨1£©£¨×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩ÔÚÖ±½Ç×ø±êϵÖÐÔ²CµÄ²ÎÊý·½³ÌΪ
x=1+2cos¦È
y=
3
+2sin¦È
£¨¦ÈΪ²ÎÊý£©£¬ÔòÔ²CµÄÆÕͨ·½³ÌΪ
(x-1)2+(y-
3
)2=4
(x-1)2+(y-
3
)2=4
£®
£¨2£©£¨²»µÈʽѡ½²Ñ¡×öÌ⣩É躯Êýf£¨x£©=|2x+1|-|x-4|£¬Ôò²»µÈʽf£¨x£©£¾2µÄ½â¼¯Îª
{x|x£¼-7»òx£¾
5
3
}
{x|x£¼-7»òx£¾
5
3
}
£®
£¨3£©£¨¼¸ºÎÖ¤Ã÷Ñ¡½²Ñ¡×öÌ⣩ ÈçͼËùʾ£¬µÈÑüÈý½ÇÐÎABCµÄµ×±ßAC³¤Îª6£¬ÆäÍâ½ÓÔ²µÄ°ë¾¶³¤Îª5£¬ÔòÈý½ÇÐÎABCµÄÃæ»ýÊÇ
3
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
£¨A£©£¨¼¸ºÎÖ¤Ã÷Ñ¡×öÌ⣩Èçͼ£¬CDÊÇÔ²OµÄÇÐÏߣ¬ÇеãΪC£¬µãBÔÚÔ²OÉÏ£¬BC=2£¬¡ÏBCD=30¡ã£¬ÔòÔ²OµÄÃæ»ýΪ
4¦Ð
4¦Ð
£»
£¨B£©£¨¼«×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩¼«×ø±ê·½³Ì¦Ñ=2sin¦È+4cos¦È±íʾµÄÇúÏ߽ئÈ=
¦Ð
4
(¦Ñ¡ÊR)
ËùµÃµÄÏÒ³¤Îª
3
2
3
2
£»
£¨C£©£¨²»µÈʽѡ×öÌ⣩  ²»µÈʽ|2x-1|£¼|x|+1½â¼¯ÊÇ
£¨0£¬2£©
£¨0£¬2£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
A£®Èçͼ£¬¡÷ABCÊÇ¡ÑOµÄÄÚ½ÓÈý½ÇÐΣ¬PAÊÇ¡ÑOµÄÇÐÏߣ¬PB½»ACÓÚµãE£¬½»¡ÑOÓÚµãD£®ÈôPA=PE£¬¡ÏABC=60¡ã£¬PD=1£¬PB=9£¬ÔòEC=
4
4
£®
B£® PΪÇúÏßC1£º
x=1+cos¦È
y=sin¦È
£¬£¨¦ÈΪ²ÎÊý£©ÉÏÒ»µã£¬ÔòËüµ½Ö±ÏßC2£º
x=1+2t
y=2
£¨tΪ²ÎÊý£©¾àÀëµÄ×îСֵΪ
1
1
£®
C£®²»µÈʽ|x2-3x-4|£¾x+1µÄ½â¼¯Îª
{x|x£¾5»òx£¼-1»ò-1£¼x£¼3}
{x|x£¾5»òx£¼-1»ò-1£¼x£¼3}
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁжþÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣®£©
£¨A£©£¨Ñ¡ÐÞ4-4×ø±êϵÓë²ÎÊý·½³Ì£©ÇúÏß
x=cos¦Á
y=a+sin¦Á
£¨¦ÁΪ²ÎÊý£©ÓëÇúÏߦÑ2-2¦Ñcos¦È=0µÄ½»µã¸öÊýΪ
 
¸ö£®
£¨B£©£¨Ñ¡ÐÞ4-5²»µÈʽѡ½²£©Èô²»µÈʽ|x+1|+|x-3| ¡Ýa+
4
a
¶ÔÈÎÒâµÄʵÊýxºã³ÉÁ¢£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸