精英家教网 > 高中数学 > 题目详情
8.$\frac{A_9^5+A_9^4}{{A_{10}^6-A_{10}^5}}$=(  )
A.$\frac{4}{15}$B.$\frac{7}{15}$C.$\frac{3}{10}$D.$\frac{3}{20}$

分析 根据排列数公式计算即可.

解答 解:$\frac{A_9^5+A_9^4}{{A_{10}^6-A_{10}^5}}$=$\frac{9×8×7×6×5+9×8×7×6}{10×9×8×7×6×5-10×9×8×7×6}$
=$\frac{5+1}{10×5-10}$
=$\frac{3}{20}$.
故选:D.

点评 本题考查了排列数公式的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.在全校学科大阅读活动中,《写给全人类的数学魔法书》40页“宝库笔记”中详细阐述了笔记的记录方法,下列选项中你认为没有必要的是(  )
A.写下对定理或公式的验证方法
B.把解题方法当中涉及到的想法和思路都记下来
C.用自己的语言来表述,不能照抄书上的
D.把所有的习题都记在这本“宝库笔记”上

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)已知x∈[-3,2],求f(x)=$\frac{1}{{4}^{x}}$-$\frac{1}{{2}^{x}}$+1的最小值与最大值.
(2)已知函数f(x)=a${\;}^{{x}^{2}-3x+3}$在[0,2]上有最大值8,求正数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,三个内角A,B,C所对的边分别为a,b,c.已知2acosB=c,且满足 sinAsinB(2-cosC)=sin2$\frac{C}{2}$+$\frac{1}{2}$,则△ABC为(  )
A.锐角非等边三角形B.等边三角形
C.等腰直角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a>0,函数$f(x)=asin2x-\sqrt{3}cos2x+1$的最大值为3.
(1)求f(x)的单调递减区间;
(2)若x∈[$\frac{π}{4}$,$\frac{π}{2}$],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题中,假命题是(  )
A.?x∈R,2017x-2>0B.?x0∈R,tanx0=22
C.?x0∈R,lgx0<0D.?x∈R,(x-100)2016>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某公司有4家直营店a,b,c,d,现需将6箱货物运送至直营店进行销售,各直营店出售该货物以往所得利润统计如下表所示.
abcd
00000
14224
26455
37766
48888
59988
6101088
根据此表,该公司获得最大总利润的运送方式有(  )
A.1种B.2种C.3种D.4种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若sinθcosθ<0,则角θ是第(  )象限角.
A.第一或第二B.第二或第三C.第三或第四D.第二或第四

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知m>0,设函数f(x)=emx-lnx-2.
(1)若m=1,证明:存在唯一实数$t∈(\frac{1}{2},1)$,使得f′(t)=0;
(2)若当x>0时,f(x)>0,证明:$m>{e^{-\frac{1}{2}}}$.

查看答案和解析>>

同步练习册答案