| A. | 锐角非等边三角形 | B. | 等边三角形 | ||
| C. | 等腰直角三角形 | D. | 钝角三角形 |
分析 已知第一个等式利用正弦定理化简,再利用诱导公式及内角和定理表示,根据两角和与差的正弦函数公式化简,得到A=B,第二个等式左边前两个因式利用积化和差公式变形,右边利用二倍角的余弦函数公式化简,将A+B=C,A-B=0代入计算求出cosC的值为0,进而确定出C为直角,即可确定出三角形形状.
解答 解:将已知等式2acosB=c,利用正弦定理化简得:2sinAcosB=sinC,
∵sinC=sin(A+B)=sinAcosB+cosAsinB,
∴2sinAcosB=sinAcosB+cosAsinB,即sinAcosB-cosAsinB=sin(A-B)=0,
∵A与B都为△ABC的内角,
∴A-B=0,即A=B,
已知第二个等式变形得:sinAsinB(2-cosC)=$\frac{1}{2}$(1-cosC)+$\frac{1}{2}$=1-$\frac{1}{2}$cosC,
-$\frac{1}{2}$[cos(A+B)-cos(A-B)](2-cosC)=1-$\frac{1}{2}$cosC,
∴-$\frac{1}{2}$(-cosC-1)(2-cosC)=1-$\frac{1}{2}$cosC,
即(cosC+1)(2-cosC)=2-cosC,
整理得:cos2C-2cosC=0,即cosC(cosC-2)=0,
∴cosC=0或cosC=2(舍去),
∴C=90°,
则△ABC为等腰直角三角形.
故选:C.
点评 此题考查了正弦定理,两角和与差的正弦函数公式,积化和差公式,二倍角的余弦函数公式,熟练掌握正弦定理是解本题的关键,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{FD}$+$\overrightarrow{DA}$+$\overrightarrow{DE}$=0 | B. | $\overrightarrow{AD}$+$\overrightarrow{BE}$+$\overrightarrow{CF}$=0 | C. | $\overrightarrow{FD}$+$\overrightarrow{DE}$+$\overrightarrow{AD}$=$\overrightarrow{AB}$ | D. | $\overrightarrow{AD}$+$\overrightarrow{EC}$+$\overrightarrow{FD}$=$\overrightarrow{BD}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{15}$ | B. | $\frac{7}{15}$ | C. | $\frac{3}{10}$ | D. | $\frac{3}{20}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 8 | C. | $4\sqrt{3}$ | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com