精英家教网 > 高中数学 > 题目详情
6.若tanα=3,tan(α+β)=2,则tanβ=(  )
A.$\frac{1}{7}$B.$-\frac{1}{7}$C.-1D.1

分析 由已知利用两角和的正切函数公式即可计算得解.

解答 解:∵tanα=3,tan(α+β)=2=$\frac{tanα+tanβ}{1-tanαtanβ}$=$\frac{3+tanβ}{1-3tanβ}$,
∴解得:tanβ=-$\frac{1}{7}$.
故选:B.

点评 本题主要考查了两角和的正切函数公式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在△ABC中,三个内角A,B,C所对的边分别为a,b,c.已知2acosB=c,且满足 sinAsinB(2-cosC)=sin2$\frac{C}{2}$+$\frac{1}{2}$,则△ABC为(  )
A.锐角非等边三角形B.等边三角形
C.等腰直角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若sinθcosθ<0,则角θ是第(  )象限角.
A.第一或第二B.第二或第三C.第三或第四D.第二或第四

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线x=1的倾斜角和斜率分别是(  )
A.45°,1B.135°,-1C.90°,不存在D.180°,不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.复数$z=\frac{1}{1+i}$的模长为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知△ABC内角A,B,C的对边分别是a,b,c,若b=c,a2=2b2(1+sinA),则A=$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知m>0,设函数f(x)=emx-lnx-2.
(1)若m=1,证明:存在唯一实数$t∈(\frac{1}{2},1)$,使得f′(t)=0;
(2)若当x>0时,f(x)>0,证明:$m>{e^{-\frac{1}{2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ex+ax2-bx-1(a,b∈R,e为自然对数的底数).
(I)设f(x)的导函数为g(x),求g(x)在区间[0,l]上的最小值;
(II)若f(1)=0,且函数f(x)在区间(0,1)内有零点,证明:-1<a<2-e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题中真命题的是(  )
①若p∧q是假命题,则p,q都是假命题;
②命题p:4<r<7,命题q:圆(x-3)2+(y+5)2=r2(r>0)上恰好有两个点到直线4x-3y=2的距离等于l,则p是q的必要不充分条件;
③若p:x≤1,q:$\frac{1}{x}$<1,则¬p是q的充分不必要条件.
④设随机变量X服从正态分布N(3,7),若P(X>C+1)=P(X<C-1),则C=7.
A.①③B.③④C.①②D.②③

查看答案和解析>>

同步练习册答案