【题目】在平面直角坐标系xOy中,动点E到定点
和定直线
的距离相等.
(1)求动点E的轨迹C的方程;
(2)设动直线![]()
与曲线C有唯一的公共点P,与直线
相交于点Q,若
,求证:点M的轨迹恒过定点
.
【答案】(1)
;(2)见解析.
【解析】
(1)设出动点E的坐标为(x,y),然后直接利用抛物线的定义求得抛物线方程;
(2)联立直线方程和抛物线方程,化为关于y的一元二次方程后由判别式等于0得到k与b的关系,求出Q的坐标,求出切点坐标,再设出M的坐标,然后由
证得答案.
(1)解:由抛物线定义可知,动点E的轨迹是以(1,0)为焦点,以x=﹣1为准线的抛物线,其方程为:y2=4x;
(2)证明:由
,消去x得:ky2﹣4y+4b=0.
由题意可知,直线l与抛物线相切,
∴△=16﹣16kb=0,即b
.
∴直线l的方程为y=kx
.
令x=﹣1,得y=﹣k
,
∴Q(﹣1,﹣k
),
设切点坐标P(x0,y0),则
,
解得:P(
,
),
设M(m,0),
则
(m
,
)(m+1,k
)=(m
)(m+1)![]()
m
m2
2=(m﹣1)(
m﹣2).
当m=1时,
.
故点M的轨迹恒过定点(1,0).
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥
中,平面
平面
,
和
均是等腰直角三角形,
,
,
、
分别为
、
的中点.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
;
(Ⅲ)求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,如果存在给定的实数对
,使得
恒成立,则称
为“
函数”;
(1)判断函数
,
是否是“
函数”;
(2)若
是一个“
函数”,求出所有满足条件的有序实数对
;
(3)若定义域为
的函数
是“
函数”,且存在满足条件的有序实数对
和
,当
时,
的值域为
,求当
时
的值域;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知
是圆
的直径,
,
在圆上且分别在
的两侧,其中
,
.现将其沿
折起使得二面角
为直二面角,则下列说法不正确的是( )
![]()
A.
,
,
,
在同一个球面上
B.当
时,三棱锥
的体积为![]()
C.
与
是异面直线且不垂直
D.存在一个位置,使得平面
平面![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,我国工业经济发展迅速,工业增加值连年攀升,某研究机构统计了近十年(从2008年到2017年)的工业增加值(万亿元),如下表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
工业增加值 | 13.2 | 13.8 | 16.5 | 19.5 | 20.9 | 22.2 | 23.4 | 23.7 | 24.8 | 28 |
依据表格数据,得到下面的散点图及一些统计量的值.
|
|
|
|
|
5.5 | 20.6 | 82.5 | 211.52 | 129.6 |
![]()
(1)根据散点图和表中数据,此研究机构对工业增加值
(万亿元)与年份序号
的回归方程类型进行了拟合实验,研究人员甲采用函数
,其拟合指数
;研究人员乙采用函数
,其拟合指数
;研究人员丙采用线性函数
,请计算其拟合指数,并用数据说明哪位研究人员的函数类型拟合效果最好.(注:相关系数
与拟合指数
满足关系
).
(2)根据(1)的判断结果及统计值,建立
关于
的回归方程(系数精确到0.01);
(3)预测到哪一年的工业增加值能突破30万亿元大关.
附:样本
的相关系数
,
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位共有老年人120人,中年人360人,青年人n人,为调查身体健康状况,需要从中抽取一个容量为m的样本,用分层抽样的方法进行抽样调查,样本中的中年人为6人,则n和m的值不可以是下列四个选项中的哪组( )
A.n=360,m=14B.n=420,m=15C.n=540,m=18D.n=660,m=19
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在贯彻中共中央、国务院关于精准扶贫政策的过程中,某单位在某市定点帮扶某村
户贫困户.为了做到精准帮扶,工作组对这
户村民的年收入情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标
.将指标
按照
,
,
,
,
分成五组,得到如图所示的频率分布直方图.规定若
,则认定该户为“绝对贫困户”,否则认定该户为“相对贫困户”;当
时,认定该户为“亟待帮住户”.工作组又对这
户家庭的受教育水平进行评测,家庭受教育水平记为“良好”与“不好”两种.
![]()
(1)完成下面的列联表,并判断是否有
的把握认为绝对贫困户数与受教育水平不好有关:
受教育水平良好 | 受教育水平不好 | 总计 | |
绝对贫困户 |
| ||
相对贫困户 |
| ||
总计 |
|
(2)上级部门为了调查这个村的特困户分布情况,在贫困指标处于
的贫困户中,随机选取两户,用
表示所选两户中“亟待帮助户”的户数,求
的分布列和数学期望
.
附:
,其中
.
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com