【题目】如图,在三棱锥
中,平面
平面
,
和
均是等腰直角三角形,
,
,
、
分别为
、
的中点.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
;
(Ⅲ)求直线
与平面
所成角的正弦值.
【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析;(Ⅲ)
.
【解析】
(Ⅰ)由中位线的性质得出
,然后利用直线与平面平行的判定定理可证明出
平面
;
(Ⅱ)由已知条件可知
,然后利用面面垂直的性质定理可证明出
平面
,即可得出
;
(Ⅲ)以
为原点,
、
所在直线分别为
轴、
轴建立空间直角坐标系,利用空间向量法求出直线
与平面
所成角的正弦值.
(Ⅰ)在
中,
、
分别为
、
的中点,所以
为中位线,所以
.
又因为
平面
,
平面
,所以
平面
;
(Ⅱ)在等腰直角三角形
中,
,所以
.
因为平面
平面
,平面
平面
,
平面
,
所以
平面
.
又因为
平面
,所以
;
(Ⅲ)在平面
内过点
作
垂直于
,由(Ⅱ)知,
平面
,
因为
平面
,所以
.
如图,以
为原点建立空间直角坐标系
.
![]()
则
,
,
,
,
.
,
,
.
设平面
的法向量为
,则
,即
.
令
则
,
,所以
.
直线
与平面
所成角大小为
,
.
所以直线
与平面
所成角的正弦值为
.
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥A﹣BCD中,点E在BD上,EA=EB=EC=ED,BD
CD,△ACD为正三角形,点M,N分别在AE,CD上运动(不含端点),且AM=CN,则当四面体C﹣EMN的体积取得最大值
时,三棱锥A﹣BCD的外接球的表面积为_____.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为椭圆
的右焦点,C的准线与E交于P,Q两点,且
.
(1)求E的方程;
(2)过E的左顶点A作直线l交E于另一点B,且BO(O为坐标原点)的延长线交E于点M,若直线AM的斜率为1,求l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用
列联表,由计算得
,参照下表:
| 0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
得到正确结论是( )
A. 有99%以上的把握认为“学生性别与中学生追星无关”
B. 有99%以上的把握认为“学生性别与中学生追星有关”
C. 在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关”
D. 在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,
是椭圆
的左右焦点,椭圆与
轴正半轴交于点
,直线
的斜率为
,且
到直线
的距离为
.
(1)求椭圆
的方程;
(2)
为椭圆
上任意一点,过
,
分别作直线
,
,且
与
相交于
轴上方一点
,当
时,求
,
两点间距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代劳动人民在筑城、筑堤、挖沟、挖渠、建仓、建囤等工程中,积累了丰富的经验,总结出了一套有关体积、容积计算的方法,这些方法以实际问题的形式被收入我国古代数学名著《九章算术》中.《九章算术》将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,如图所示的阳马三视图,则它的体积为( )
![]()
A.
B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex(x+1)2,令f1(x)=f'(x),fn+1(x)=fn'(x),若fn(x)=ex(anx2+bnx+cn),记数列{
}的前n项和为Sn,则下列选项中与S2019的值最接近的是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面四边形
中,E,F是
,
中点,
,
,
,将
沿对角线
折起至
,使平面
平面
,则四面体
中,下列结论不正确的是( )
![]()
A.
平面
B.异面直线
与
所成的角为90°
C.异面直线
与
所成的角为60°D.直线
与平面
所成的角为30°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com