精英家教网 > 高中数学 > 题目详情
已知f(x)=ln(1+x)-
x1+ax
(a>0).
(I) 若f(x)在(0,+∞)内为单调增函数,求a的取值范围;
(II) 若函数f(x)在x=O处取得极小值,求a的取值范围.
分析:先根据导数法则与公式求出f(x)的导数f′(x).
(I)由函数的单调性与导数的关系易得f′(x)≥0,再结合二次函数的性质可得
1-2a
a2
≤0,即可求出a的取值范围;
(II)由f(x)在x=O处取得极小值,可知在x=O左侧有f′(x)<0,在x=O右侧有f′(x)>0,则
1-2a
a2
<0,即可求出a的取值范围.
解答:解:由f(x)=ln(1+x)-
x
1+ax
(a>0)
得f′(x)=
1
1+x
-
(1+ax)-ax
(1+ax)2
=
a2x(x-
1-2a
a2
)
(1+x)(1+ax)2

(Ⅰ)∵f(x)在(0,+∞)内为单调增函数∴f′(x)≥0在(0,+∞)上恒成立.
又a>0∴x(x-
1-2a
a2
)
≥0在(0,+∞)上恒成立
1-2a
a2
≤0,解得a≥
1
2

(Ⅱ)由f′(x)=
a2x(x-
1-2a
a2
)
(1+x)(1+ax)2
=0 得x1=0,x2=
1-2a
a2
(a>0)
其中a2、(1+x)、(1+ax)2均大于0
∵f(x)在x=O处取得极小值
∴在x=O左侧有f′(x)<0,在x=O右侧有f′(x)>0.
1-2a
a2
<0,解得a>
1
2
点评:本题主要考查函数的单调性、极值与导数的关系,同时考查求导的公式与法则.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果函数f(x)在区间D上有定义,且对任意x1,x2∈D,x1≠x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2
,则称函数f(x)在区间D上的“凹函数”.
(Ⅰ)已知f(x)=ln(1+ex)-x(x∈R),判断f(x)是否是“凹函数”,若是,请给出证明;若不是,请说明理由;
(Ⅱ)对于(I)中的函数f(x)有下列性质:“若x∈[a,b],则存在x0(a,b)使得
f(b)-f(a)
b-a
=f′(x0)”成立.利用这个性质证明x0唯一;
(Ⅲ)设A、B、C是函数f(x)=ln(1+ex)-x(x∈R)图象上三个不同的点,求证:△ABC是钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ln(x+1).
(1)若g(x)=
1
4
x2-x+f(x)
,求g(x)在[0,2]上的最大值与最小值;
(2)当x>0时,求证
1
1+x
<f(
1
x
)<
1
x

(3)当n∈N+且n≥2时,求证:
1
2
+
1
3
+
1
4
+…+
1
n+1
<f(n)<1+
1
2
+
1
3
+…+
1
n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ln(x+1)-ax(a∈R)
(1)当a=1时,求f(x)在定义域上的最大值;
(2)已知y=f(x)在x∈[1,+∞)上恒有f(x)<0,求a的取值范围;
(3)求证:
12+1+1
12+1
22+2+1
22+2
32+3+1
32+3
•…•
n2+n+1
n2+n
<e

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ln(1+x)-
14
x2 是定义在[0,2]上的函数
(1)求函数f(x)的单调区间
(2)若f(x)≥c对定义域内的x恒成立,求c的取值范围..

查看答案和解析>>

同步练习册答案