精英家教网 > 高中数学 > 题目详情
已知f(x)=ln(x+1)-ax(a∈R)
(1)当a=1时,求f(x)在定义域上的最大值;
(2)已知y=f(x)在x∈[1,+∞)上恒有f(x)<0,求a的取值范围;
(3)求证:
12+1+1
12+1
22+2+1
22+2
32+3+1
32+3
•…•
n2+n+1
n2+n
<e
分析:(1)由f(x)=ln(x+1)-ax(a∈R),a=1,知f(x)=
1
1+x
-1=
-x
1+x
,由此能求出f(x)在定义域上的最大值.
(2)y=f(x)在x∈[1,+∞)上恒有f(x)<0,等价于a>
ln(x+1)
x
恒成立,由此能够求出a的取值范围.
(3)要证
12+1+1
12+1
22+2+1
22+2
32+3+1
32+3
•…•
n2+n+1
n2+n
<e
,只需证ln(1+
1
12+1
)+ln(1+
1
22+2
)+…+ln(1+
1
n2+n
)<1
,由此能够得到证明.
解答:解:(1)∵f(x)=ln(x+1)-ax(a∈R),a=1,
f(x)=
1
1+x
-1=
-x
1+x

f(x)=
-x
1+x
>0,得-1<x<0;由f(x)=
-x
1+x
<0,得x>0;
所以y=f(x)在(-1,0)为增,在(0,+∞)为减,
所以x=0时,f(x)取最大值0.
(2)y=f(x)在x∈[1,+∞)上恒有f(x)<0,
等价于a>
ln(x+1)
x
恒成立,
g(x)=
ln(x+1)
x
g(x)=
x
1+x
-ln(x+1)
x2

h(x)=
x
1+x
-ln(x+1)⇒h(x)=
1
(1+x)2
-
1
1+x
=
-x
(1+x)2
<0(x≥1)

所以h(x)是减函数,所以h(x)≤h(1)=
1
2
-ln2<0(4>e⇒2>e
1
2
)

所以g(x)是减函数,gmax(x)=g(1),所以a>ln2
(3)要证
12+1+1
12+1
22+2+1
22+2
32+3+1
32+3
•…•
n2+n+1
n2+n
<e

只需证ln
12+1+1
12+1
+ln
22+2+1
22+2
+…+ln
n2+n+1
n2+2
<1

只需证ln(1+
1
12+1
)+ln(1+
1
22+2
)+…+ln(1+
1
n2+n
)<1

因为ln(1+
1
n2+n
)<
1
n2+n
=
1
n
-
1
n+1

所以ln(1+
1
12+1
)+ln(1+
1
22+2
)+…+ln(1+
1
n2+n
)<1-
1
n+1
<1

12+1+1
12+1
22+2+1
22+2
32+3+1
32+3
•…•
n2+n+1
n2+n
<e
点评:本题考查函数的最大值的求法,考查满足条件的实数的取值范围的求法,考查不等式的证明.解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=ln(1+x)-
x1+ax
(a>0).
(I) 若f(x)在(0,+∞)内为单调增函数,求a的取值范围;
(II) 若函数f(x)在x=O处取得极小值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)在区间D上有定义,且对任意x1,x2∈D,x1≠x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2
,则称函数f(x)在区间D上的“凹函数”.
(Ⅰ)已知f(x)=ln(1+ex)-x(x∈R),判断f(x)是否是“凹函数”,若是,请给出证明;若不是,请说明理由;
(Ⅱ)对于(I)中的函数f(x)有下列性质:“若x∈[a,b],则存在x0(a,b)使得
f(b)-f(a)
b-a
=f′(x0)”成立.利用这个性质证明x0唯一;
(Ⅲ)设A、B、C是函数f(x)=ln(1+ex)-x(x∈R)图象上三个不同的点,求证:△ABC是钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ln(x+1).
(1)若g(x)=
1
4
x2-x+f(x)
,求g(x)在[0,2]上的最大值与最小值;
(2)当x>0时,求证
1
1+x
<f(
1
x
)<
1
x

(3)当n∈N+且n≥2时,求证:
1
2
+
1
3
+
1
4
+…+
1
n+1
<f(n)<1+
1
2
+
1
3
+…+
1
n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ln(1+x)-
14
x2 是定义在[0,2]上的函数
(1)求函数f(x)的单调区间
(2)若f(x)≥c对定义域内的x恒成立,求c的取值范围..

查看答案和解析>>

同步练习册答案