精英家教网 > 高中数学 > 题目详情
(2012•许昌三模)设函数f(x)=
1
1-x
,x∈(-∞,0]
f(x-3),x∈(0,+∞)
,若方程4f(x)+x-m=0有且仅有两个实数根,则实数m的取值范围是(  )
分析:由题意可得函数f(x)的图象和直线 y=
 m-x
4
有2个交点,数形结合可得直线在y轴上的截距
m
4
1
4
,解得 m的取值范围.
解答:解:由题意可得函数f(x)的图象和直线 y=
 m-x
4
有2个交点,且直线的斜率等于-
1
4
,在y轴上的截距等于
m
4

当x≤0时,0<f(x)≤1,且 f(x)是增函数,f(-3)=
1
4

当x>0时,f(x)=f(x-3),故 f(x)在(0,+∞)上的图象是由f(x)在(-3,0]上的图象依次平移得到,如图:
故有
m
4
1
4
,解得 m>1,
故选B.
点评:本题考查了方程的根的个数、函数零点判断等等知识点,属于中档题.采用数形结合是此种问题的常用解法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•许昌三模)已知数列{an}中,a1=a2=1,且an+2-an=1,则数列{an}的前100项和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌三模)已知A,B是圆x2+y2=2上两动点,O是坐标原点,且∠AOB=120°,以A,B为切点的圆的两条切线交于点P,则点P的轨迹方程为
x2+y2=8
x2+y2=8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌三模)如图,在RT△ABC中,D是斜边AB上一点,且AC=AD,记∠BCD=β,∠ABC=α.
(Ⅰ)求sinα-cos2β的值;
(Ⅱ)若BC=
3
CD,求∠CAB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌三模)如图,在四面体ABCD中,二面角A-CD-B的平面角为60°,AC⊥CD,BD⊥CD,且AC=CD=2BD,点E、F分别是AD、BC的中点.
(Ⅰ)求作平面α,使EF?α,且AC∥平面α,BD∥平面α;
(Ⅱ)求证:EF⊥平面BCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌三模)已知函数f(x)=ex,若函数g(x)满足f(x)≥g(x)恒成立,则称g(x)为函数f(x)的下界函数.
(Ⅰ)若函数g(x)-kx是f(x)的下界函数,求实数k的取值范围;
(Ⅱ)证明:对于?m≤2,,函数h(x)=m+lnx都是f(x)的下界函数.

查看答案和解析>>

同步练习册答案